Abstract

The amount of asymmetry of saturated-absorption peaks observed outside a cavity with two collinearly counterpropagating Gaussian beams is analyzed at different points in the cross section of the probe beam. Although the total beam exhibits a quasi-symmetric line shape, a spatial distribution of asymmetries with different amounts and signs is obtained versus the distance to the beam axis. A simple model taking account of pure focusing and defocusing effects induced by a saturated Gaussian beam leads to agreement between experiment and theory for the 5944-Å neon line in the case of saturated-absorption spectroscopy.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Couillaud, A. Ducasse, “Refractive index saturation effects in saturated absorption experiments,” Phys. Rev. Lett. 35, 1276 (1975); Thesis, University of Bordeaux, 1978 (unpublished).
    [Crossref]
  2. C. Bordé et al., “Mise en évidence expérimental du phénomène de dispersion saturée dans l’iode à 5145 Å,” C. R. Acad. Sci. 277, 381 (1973).
  3. A. Le Floch et al., “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
    [Crossref]
  4. R. G. Bray et al., “Measurement of highly forbidden optical transitions by intracavity cw dye laser spectroscopy,” Chem. Phys. Lett 47, 213 (1977); W. T. Hill et al., “Sensitive intracavity absorption at reduced pressures,” Opt. Commun. 32, 96 (1980); P. Kumar et al., “Line shape studies in cw dye laser intracavity absorption,” Opt. Commun. 32, 129 (1980).
    [Crossref]
  5. C. Brechignac, R. Vetter, P. R. Berman, “Study of velocity-changing collisions in excited Kr using saturation spectroscopy,” Phys. Rev. A 17, 1609 (1978).
    [Crossref]
  6. A Ricard, Thesis, University of Toulouse, 1971 (unpublished).
  7. A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), Sec. 8.2.
  8. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), Sec. 6.7.
  9. J. P. Taché, “Off-resonance dispersion profile effect in gas laser resonators,” Appl. Opt. (to be published).
  10. B. Decomps, M. Dumont, M. Ducloy in Laser Spectroscopy of Atoms and Molecules (Springer-Verlag, Berlin, 1976), Vol. 2, p. 283.
    [Crossref]
  11. R. L. Shoemaker, in Laser Applications to Optics and Spectroscopy (Addison-Wesley, Reading, Mass., 1975), Vol. 2, p. 453.

1980 (1)

A. Le Floch et al., “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
[Crossref]

1978 (1)

C. Brechignac, R. Vetter, P. R. Berman, “Study of velocity-changing collisions in excited Kr using saturation spectroscopy,” Phys. Rev. A 17, 1609 (1978).
[Crossref]

1977 (1)

R. G. Bray et al., “Measurement of highly forbidden optical transitions by intracavity cw dye laser spectroscopy,” Chem. Phys. Lett 47, 213 (1977); W. T. Hill et al., “Sensitive intracavity absorption at reduced pressures,” Opt. Commun. 32, 96 (1980); P. Kumar et al., “Line shape studies in cw dye laser intracavity absorption,” Opt. Commun. 32, 129 (1980).
[Crossref]

1975 (1)

B. Couillaud, A. Ducasse, “Refractive index saturation effects in saturated absorption experiments,” Phys. Rev. Lett. 35, 1276 (1975); Thesis, University of Bordeaux, 1978 (unpublished).
[Crossref]

1973 (1)

C. Bordé et al., “Mise en évidence expérimental du phénomène de dispersion saturée dans l’iode à 5145 Å,” C. R. Acad. Sci. 277, 381 (1973).

Berman, P. R.

C. Brechignac, R. Vetter, P. R. Berman, “Study of velocity-changing collisions in excited Kr using saturation spectroscopy,” Phys. Rev. A 17, 1609 (1978).
[Crossref]

Bordé, C.

C. Bordé et al., “Mise en évidence expérimental du phénomène de dispersion saturée dans l’iode à 5145 Å,” C. R. Acad. Sci. 277, 381 (1973).

Bray, R. G.

R. G. Bray et al., “Measurement of highly forbidden optical transitions by intracavity cw dye laser spectroscopy,” Chem. Phys. Lett 47, 213 (1977); W. T. Hill et al., “Sensitive intracavity absorption at reduced pressures,” Opt. Commun. 32, 96 (1980); P. Kumar et al., “Line shape studies in cw dye laser intracavity absorption,” Opt. Commun. 32, 129 (1980).
[Crossref]

Brechignac, C.

C. Brechignac, R. Vetter, P. R. Berman, “Study of velocity-changing collisions in excited Kr using saturation spectroscopy,” Phys. Rev. A 17, 1609 (1978).
[Crossref]

Couillaud, B.

B. Couillaud, A. Ducasse, “Refractive index saturation effects in saturated absorption experiments,” Phys. Rev. Lett. 35, 1276 (1975); Thesis, University of Bordeaux, 1978 (unpublished).
[Crossref]

Decomps, B.

B. Decomps, M. Dumont, M. Ducloy in Laser Spectroscopy of Atoms and Molecules (Springer-Verlag, Berlin, 1976), Vol. 2, p. 283.
[Crossref]

Ducasse, A.

B. Couillaud, A. Ducasse, “Refractive index saturation effects in saturated absorption experiments,” Phys. Rev. Lett. 35, 1276 (1975); Thesis, University of Bordeaux, 1978 (unpublished).
[Crossref]

Ducloy, M.

B. Decomps, M. Dumont, M. Ducloy in Laser Spectroscopy of Atoms and Molecules (Springer-Verlag, Berlin, 1976), Vol. 2, p. 283.
[Crossref]

Dumont, M.

B. Decomps, M. Dumont, M. Ducloy in Laser Spectroscopy of Atoms and Molecules (Springer-Verlag, Berlin, 1976), Vol. 2, p. 283.
[Crossref]

Le Floch, A.

A. Le Floch et al., “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
[Crossref]

Ricard, A

A Ricard, Thesis, University of Toulouse, 1971 (unpublished).

Shoemaker, R. L.

R. L. Shoemaker, in Laser Applications to Optics and Spectroscopy (Addison-Wesley, Reading, Mass., 1975), Vol. 2, p. 453.

Siegman, A. E.

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), Sec. 8.2.

Taché, J. P.

J. P. Taché, “Off-resonance dispersion profile effect in gas laser resonators,” Appl. Opt. (to be published).

Vetter, R.

C. Brechignac, R. Vetter, P. R. Berman, “Study of velocity-changing collisions in excited Kr using saturation spectroscopy,” Phys. Rev. A 17, 1609 (1978).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), Sec. 6.7.

C. R. Acad. Sci. (1)

C. Bordé et al., “Mise en évidence expérimental du phénomène de dispersion saturée dans l’iode à 5145 Å,” C. R. Acad. Sci. 277, 381 (1973).

Chem. Phys. Lett (1)

R. G. Bray et al., “Measurement of highly forbidden optical transitions by intracavity cw dye laser spectroscopy,” Chem. Phys. Lett 47, 213 (1977); W. T. Hill et al., “Sensitive intracavity absorption at reduced pressures,” Opt. Commun. 32, 96 (1980); P. Kumar et al., “Line shape studies in cw dye laser intracavity absorption,” Opt. Commun. 32, 129 (1980).
[Crossref]

Phys. Rev. A (1)

C. Brechignac, R. Vetter, P. R. Berman, “Study of velocity-changing collisions in excited Kr using saturation spectroscopy,” Phys. Rev. A 17, 1609 (1978).
[Crossref]

Phys. Rev. Lett. (2)

A. Le Floch et al., “Nonlinear frequency-dependent diffraction effect in intracavity resonance asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
[Crossref]

B. Couillaud, A. Ducasse, “Refractive index saturation effects in saturated absorption experiments,” Phys. Rev. Lett. 35, 1276 (1975); Thesis, University of Bordeaux, 1978 (unpublished).
[Crossref]

Other (6)

A Ricard, Thesis, University of Toulouse, 1971 (unpublished).

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), Sec. 8.2.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), Sec. 6.7.

J. P. Taché, “Off-resonance dispersion profile effect in gas laser resonators,” Appl. Opt. (to be published).

B. Decomps, M. Dumont, M. Ducloy in Laser Spectroscopy of Atoms and Molecules (Springer-Verlag, Berlin, 1976), Vol. 2, p. 283.
[Crossref]

R. L. Shoemaker, in Laser Applications to Optics and Spectroscopy (Addison-Wesley, Reading, Mass., 1975), Vol. 2, p. 453.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Normalized asymmetric theoretical profiles along a diameter. The points are experimental. 20Ne pressure = 0.20 Torr; 2γνD = 0.035; B = 2.9; curve a, α(r) = −0.05; curve b, α(r) = 0; curve c, α(r) = 0.1.

Fig. 3
Fig. 3

Experimental profiles obtained by modulating the probe beam. Curves (a) at the center of the beam, curves (b), on the edge.

Fig. 4
Fig. 4

Theoretical spatial distortion of a Gaussian probe beam with a 50-m focal-length lens and the spatial amount of asymmetry.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( Δ ) [ L ( γ ) + B G ( Δ ν D ) ] G ( Δ ν D ) ,
I ( Δ , r ) [ L ( γ ) + B G ( Δ ν D ) ] G ( Δ ν D ) [ 1 + α ( r ) Δ n ] .

Metrics