Abstract

We report the first known observation of Raman scattering by oxygen atoms. The 3P23P1 and 3P23P0 transitions in the electronic ground state that produced Raman shifts of 158 and 227 cm−1 were detected. These transitions were observed in a fuel-lean atmospheric H2 + O2 flame. By comparing the O electronic and O2 pure-rotational Raman-scattering intensities, we measured the polarized cross sections for the two lines to be 6 ± 1 × 10−31 and 4 ± 1 × 10−31 cm2/sr, respectively, with an excitation source at 532.1 nm. These cross sections are two to three times stronger than those predicted by a single-configuration single-excitation Coulomb approximation.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Bechtel, “Temperature measurements of the hydroxyl radical and molecular nitrogen in premixed, laminar flames by laser techniques,” Appl. Opt. 18, 2100 (1979).
    [CrossRef] [PubMed]
  2. J. H. Bechtel, R. E. Teets, “Hydroxyl and its concentration profile in methane–air flames,” Appl. Opt. 18, 4138 (1979).
    [CrossRef] [PubMed]
  3. R. E. Teets, J. H. Bechtel, “Sensitivity analysis of a model for the radical recomination region of hydrocarbon–air flames,” in the Proceedings of the 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1980).
  4. J. H. Bechtel et al., “Atmospheric pressure, premixed hydrocarbon–air flames: theory and experiment,” Combust. Flame40 (1981) (to be published).
  5. A. Flusberg, R. A. Weingarten, S. R. Hartmann, “Spontaneous Raman scattering in atomic thallium vapor,” Phys. Lett. 43A, 433 (1973).
  6. L. Vriens, M. Adriaansz, “Electronic Raman scattering from Al, Ga, In, and Tl atoms,” J. Appl. Phys. 46, 3146 (1975).
    [CrossRef]
  7. J. C. Cummings, D. P. Aeschliman, “Raman spectroscopy of atomic fluorine,” Opt. Commun. 31, 165 (1979).
    [CrossRef]
  8. H. Schlossberg, “Fluorine-atom probe techniques for chemical lasers,” J. Appl. Phys. 47, 2044 (1976).
    [CrossRef]
  9. A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
    [CrossRef]
  10. D. L. Renschler et al., “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173 (1969).
    [CrossRef]
  11. D. W. Lepard, “Theoretical calculations of electronic Raman effects of the NO and O2 molecules,” Can. J. Phys. 48, 1664 (1970).
    [CrossRef]
  12. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).
  13. C. E. Moore, Selected Tables of Atomic Spectra: Atomic Energy Levels and Multiplet Tables: OI (Nat. Stand. Ref. Data Ser. 3, Nat. Bur. Stand., Washington, D.C., 1976), Sec. 7, p. A8 I-2.
  14. S. Gordon, B. J. McBride, “Computer program for calculation of complex equilibrium compositions,” NASA Lewis Research Center, Doc. No. N71-3775 (National Technical Information Service, Springfield, Va., 1971).
  15. L. D. Smoot, W. C. Hecker, G. A. Williams, “Prediction of propagating methane–air flames,” Combust. Flame 26, 323 (1976).
    [CrossRef]
  16. N. J. Brown et al., “Low pressure hydrogen/oxygen flame studies,” Combust. Flame 33, 151 (1978).
    [CrossRef]
  17. L. D. Smoot, “The structure of nonadiabatic, low pressure methane–oxygen flames,” Combust. Flame 31, 325 (1978).
    [CrossRef]
  18. C. J. Dasch, unpublished results.
  19. C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712 (1974).
    [CrossRef]
  20. L. Vriens, “Raman scattering cross sections of In and Tl atoms and multiphoton processes in Sr,” Opt. Commun. 11, 396(1974).
    [CrossRef]
  21. W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1: Hydrogen through Neon (Nat. Stand. Ref. Data Ser. 4, Nat. Bur. Stand., Washington, D.C., 1966), p. 78.

1979 (3)

1978 (3)

N. J. Brown et al., “Low pressure hydrogen/oxygen flame studies,” Combust. Flame 33, 151 (1978).
[CrossRef]

L. D. Smoot, “The structure of nonadiabatic, low pressure methane–oxygen flames,” Combust. Flame 31, 325 (1978).
[CrossRef]

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

1976 (2)

L. D. Smoot, W. C. Hecker, G. A. Williams, “Prediction of propagating methane–air flames,” Combust. Flame 26, 323 (1976).
[CrossRef]

H. Schlossberg, “Fluorine-atom probe techniques for chemical lasers,” J. Appl. Phys. 47, 2044 (1976).
[CrossRef]

1975 (1)

L. Vriens, M. Adriaansz, “Electronic Raman scattering from Al, Ga, In, and Tl atoms,” J. Appl. Phys. 46, 3146 (1975).
[CrossRef]

1974 (2)

L. Vriens, “Raman scattering cross sections of In and Tl atoms and multiphoton processes in Sr,” Opt. Commun. 11, 396(1974).
[CrossRef]

C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712 (1974).
[CrossRef]

1973 (1)

A. Flusberg, R. A. Weingarten, S. R. Hartmann, “Spontaneous Raman scattering in atomic thallium vapor,” Phys. Lett. 43A, 433 (1973).

1970 (1)

D. W. Lepard, “Theoretical calculations of electronic Raman effects of the NO and O2 molecules,” Can. J. Phys. 48, 1664 (1970).
[CrossRef]

1969 (1)

D. L. Renschler et al., “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173 (1969).
[CrossRef]

Adriaansz, M.

L. Vriens, M. Adriaansz, “Electronic Raman scattering from Al, Ga, In, and Tl atoms,” J. Appl. Phys. 46, 3146 (1975).
[CrossRef]

Aeschliman, D. P.

J. C. Cummings, D. P. Aeschliman, “Raman spectroscopy of atomic fluorine,” Opt. Commun. 31, 165 (1979).
[CrossRef]

Bechtel, J. H.

J. H. Bechtel, “Temperature measurements of the hydroxyl radical and molecular nitrogen in premixed, laminar flames by laser techniques,” Appl. Opt. 18, 2100 (1979).
[CrossRef] [PubMed]

J. H. Bechtel, R. E. Teets, “Hydroxyl and its concentration profile in methane–air flames,” Appl. Opt. 18, 4138 (1979).
[CrossRef] [PubMed]

J. H. Bechtel et al., “Atmospheric pressure, premixed hydrocarbon–air flames: theory and experiment,” Combust. Flame40 (1981) (to be published).

R. E. Teets, J. H. Bechtel, “Sensitivity analysis of a model for the radical recomination region of hydrocarbon–air flames,” in the Proceedings of the 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1980).

Bonczyk, P. A.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

Brown, N. J.

N. J. Brown et al., “Low pressure hydrogen/oxygen flame studies,” Combust. Flame 33, 151 (1978).
[CrossRef]

Cummings, J. C.

J. C. Cummings, D. P. Aeschliman, “Raman spectroscopy of atomic fluorine,” Opt. Commun. 31, 165 (1979).
[CrossRef]

Dasch, C. J.

C. J. Dasch, unpublished results.

Eckbreth, A. C.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

Flusberg, A.

A. Flusberg, R. A. Weingarten, S. R. Hartmann, “Spontaneous Raman scattering in atomic thallium vapor,” Phys. Lett. 43A, 433 (1973).

Glennon, B. M.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1: Hydrogen through Neon (Nat. Stand. Ref. Data Ser. 4, Nat. Bur. Stand., Washington, D.C., 1966), p. 78.

Gordon, S.

S. Gordon, B. J. McBride, “Computer program for calculation of complex equilibrium compositions,” NASA Lewis Research Center, Doc. No. N71-3775 (National Technical Information Service, Springfield, Va., 1971).

Hartmann, S. R.

A. Flusberg, R. A. Weingarten, S. R. Hartmann, “Spontaneous Raman scattering in atomic thallium vapor,” Phys. Lett. 43A, 433 (1973).

Hecker, W. C.

L. D. Smoot, W. C. Hecker, G. A. Williams, “Prediction of propagating methane–air flames,” Combust. Flame 26, 323 (1976).
[CrossRef]

Herzberg, G.

G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).

Lapp, M.

Lepard, D. W.

D. W. Lepard, “Theoretical calculations of electronic Raman effects of the NO and O2 molecules,” Can. J. Phys. 48, 1664 (1970).
[CrossRef]

McBride, B. J.

S. Gordon, B. J. McBride, “Computer program for calculation of complex equilibrium compositions,” NASA Lewis Research Center, Doc. No. N71-3775 (National Technical Information Service, Springfield, Va., 1971).

Moore, C. E.

C. E. Moore, Selected Tables of Atomic Spectra: Atomic Energy Levels and Multiplet Tables: OI (Nat. Stand. Ref. Data Ser. 3, Nat. Bur. Stand., Washington, D.C., 1976), Sec. 7, p. A8 I-2.

Penney, C. M.

Peters, R. L. St.

Renschler, D. L.

D. L. Renschler et al., “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173 (1969).
[CrossRef]

Schlossberg, H.

H. Schlossberg, “Fluorine-atom probe techniques for chemical lasers,” J. Appl. Phys. 47, 2044 (1976).
[CrossRef]

Smith, M. W.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1: Hydrogen through Neon (Nat. Stand. Ref. Data Ser. 4, Nat. Bur. Stand., Washington, D.C., 1966), p. 78.

Smoot, L. D.

L. D. Smoot, “The structure of nonadiabatic, low pressure methane–oxygen flames,” Combust. Flame 31, 325 (1978).
[CrossRef]

L. D. Smoot, W. C. Hecker, G. A. Williams, “Prediction of propagating methane–air flames,” Combust. Flame 26, 323 (1976).
[CrossRef]

Teets, R. E.

J. H. Bechtel, R. E. Teets, “Hydroxyl and its concentration profile in methane–air flames,” Appl. Opt. 18, 4138 (1979).
[CrossRef] [PubMed]

R. E. Teets, J. H. Bechtel, “Sensitivity analysis of a model for the radical recomination region of hydrocarbon–air flames,” in the Proceedings of the 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1980).

Verdieck, J. F.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

Vriens, L.

L. Vriens, M. Adriaansz, “Electronic Raman scattering from Al, Ga, In, and Tl atoms,” J. Appl. Phys. 46, 3146 (1975).
[CrossRef]

L. Vriens, “Raman scattering cross sections of In and Tl atoms and multiphoton processes in Sr,” Opt. Commun. 11, 396(1974).
[CrossRef]

Weingarten, R. A.

A. Flusberg, R. A. Weingarten, S. R. Hartmann, “Spontaneous Raman scattering in atomic thallium vapor,” Phys. Lett. 43A, 433 (1973).

Wiese, W. L.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1: Hydrogen through Neon (Nat. Stand. Ref. Data Ser. 4, Nat. Bur. Stand., Washington, D.C., 1966), p. 78.

Williams, G. A.

L. D. Smoot, W. C. Hecker, G. A. Williams, “Prediction of propagating methane–air flames,” Combust. Flame 26, 323 (1976).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. Rev. (1)

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

Can. J. Phys. (1)

D. W. Lepard, “Theoretical calculations of electronic Raman effects of the NO and O2 molecules,” Can. J. Phys. 48, 1664 (1970).
[CrossRef]

Combust. Flame (3)

L. D. Smoot, W. C. Hecker, G. A. Williams, “Prediction of propagating methane–air flames,” Combust. Flame 26, 323 (1976).
[CrossRef]

N. J. Brown et al., “Low pressure hydrogen/oxygen flame studies,” Combust. Flame 33, 151 (1978).
[CrossRef]

L. D. Smoot, “The structure of nonadiabatic, low pressure methane–oxygen flames,” Combust. Flame 31, 325 (1978).
[CrossRef]

J. Appl. Phys. (2)

H. Schlossberg, “Fluorine-atom probe techniques for chemical lasers,” J. Appl. Phys. 47, 2044 (1976).
[CrossRef]

L. Vriens, M. Adriaansz, “Electronic Raman scattering from Al, Ga, In, and Tl atoms,” J. Appl. Phys. 46, 3146 (1975).
[CrossRef]

J. Mol. Spectrosc. (1)

D. L. Renschler et al., “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

L. Vriens, “Raman scattering cross sections of In and Tl atoms and multiphoton processes in Sr,” Opt. Commun. 11, 396(1974).
[CrossRef]

J. C. Cummings, D. P. Aeschliman, “Raman spectroscopy of atomic fluorine,” Opt. Commun. 31, 165 (1979).
[CrossRef]

Phys. Lett. (1)

A. Flusberg, R. A. Weingarten, S. R. Hartmann, “Spontaneous Raman scattering in atomic thallium vapor,” Phys. Lett. 43A, 433 (1973).

Other (7)

R. E. Teets, J. H. Bechtel, “Sensitivity analysis of a model for the radical recomination region of hydrocarbon–air flames,” in the Proceedings of the 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1980).

J. H. Bechtel et al., “Atmospheric pressure, premixed hydrocarbon–air flames: theory and experiment,” Combust. Flame40 (1981) (to be published).

C. J. Dasch, unpublished results.

G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).

C. E. Moore, Selected Tables of Atomic Spectra: Atomic Energy Levels and Multiplet Tables: OI (Nat. Stand. Ref. Data Ser. 3, Nat. Bur. Stand., Washington, D.C., 1976), Sec. 7, p. A8 I-2.

S. Gordon, B. J. McBride, “Computer program for calculation of complex equilibrium compositions,” NASA Lewis Research Center, Doc. No. N71-3775 (National Technical Information Service, Springfield, Va., 1971).

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1: Hydrogen through Neon (Nat. Stand. Ref. Data Ser. 4, Nat. Bur. Stand., Washington, D.C., 1966), p. 78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The H2 + O2 slot burner used in this work.

Fig. 2
Fig. 2

The calculated spatial dependence of the temperature and the O:O2 molar ratio for the H2 + O2 flame. The shaded area is the region where the spectra were taken.

Fig. 3
Fig. 3

The experimental (filled circles) and fitted (dashed lines) spectra for O electronic and O2 rotational Raman scattering observed in the H2 + O2 flame using 200-sec counting periods. Arrows indicate the positions of the O electronic transitions from Ref. 13.

Tables (1)

Tables Icon

Table 1 3P Oxygen Atom Raman Cross Sections

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I O 2 ( ν ) = I n O 2 υ , N g ( ν ν υ , N ) σ υ , N ( 2 N + 1 ) × exp ( E υ , N / k T ) / Q O 2 , I O ( ν ) = I n O J g ( ν ν J ) σ J ( 2 J + 1 ) exp ( E J / k T ) / Q O ,
σ N ( N + 1 ) ( N + 2 ) / ( 2 N + 1 ) ( 2 N + 3 ) .
S 1 3 e T P 2 3 = 5 / 3 R ( 3 s , 2 p ) , S 1 3 e T P 1 3 = R ( 3 s , 2 p ) , S 1 3 e T P 0 3 = 1 / 3 R ( 3 s , 2 p ) .

Metrics