Abstract

We theoretically examine bistable operation in reflection with simultaneous excitation of the surface-plasmon mode at the interface with a nonlinear Kerr medium. Bistability may occur for an incident power an order of magnitude below that reported previously for a grazing-incidence geometry.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Kaplan, “Theory of hysteresis reflection and refraction of light by a boundary of a nonlinear medium,” Sov. Phys. JETP 45, 896 (1977).
  2. P. W. Smith et al., “Optical bistability at a nonlinear interface,” Appl. Phys. Lett. 35, 846 (1979).
    [CrossRef]
  3. H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630 (1975).
    [CrossRef]
  4. M. Born, E. Wolf, Principles of Optics, 3rd ed. (Macmillan, New York, 1965), p. 62.
  5. G. M. Wysin, “Optical bistability with surface plasmons,” M.S. thesis, University of Toledo, Toledo, Ohio (1980).
  6. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  7. A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
    [CrossRef]
  8. M. J. Moran, C.-Y. She, R. L. Carmen, “Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser system related materials,” IEEE J. Quantum Electron. QE-11, 259 (1975).
    [CrossRef]
  9. C. Sauteret et al., “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36, 956 (1976).
    [CrossRef]
  10. P. W. Smith, W. J. Tomlinson, P. J. Maloney, “Waveguide nonlinear interface devices,” J. Opt. Soc. Am. 70, 658 (1980).

1980 (1)

P. W. Smith, W. J. Tomlinson, P. J. Maloney, “Waveguide nonlinear interface devices,” J. Opt. Soc. Am. 70, 658 (1980).

1979 (1)

P. W. Smith et al., “Optical bistability at a nonlinear interface,” Appl. Phys. Lett. 35, 846 (1979).
[CrossRef]

1977 (1)

A. E. Kaplan, “Theory of hysteresis reflection and refraction of light by a boundary of a nonlinear medium,” Sov. Phys. JETP 45, 896 (1977).

1976 (1)

C. Sauteret et al., “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36, 956 (1976).
[CrossRef]

1975 (3)

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630 (1975).
[CrossRef]

A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
[CrossRef]

M. J. Moran, C.-Y. She, R. L. Carmen, “Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser system related materials,” IEEE J. Quantum Electron. QE-11, 259 (1975).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Macmillan, New York, 1965), p. 62.

Carmen, R. L.

M. J. Moran, C.-Y. She, R. L. Carmen, “Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser system related materials,” IEEE J. Quantum Electron. QE-11, 259 (1975).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kaplan, A. E.

A. E. Kaplan, “Theory of hysteresis reflection and refraction of light by a boundary of a nonlinear medium,” Sov. Phys. JETP 45, 896 (1977).

Maloney, P. J.

P. W. Smith, W. J. Tomlinson, P. J. Maloney, “Waveguide nonlinear interface devices,” J. Opt. Soc. Am. 70, 658 (1980).

Maradudin, A. A.

A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
[CrossRef]

Mills, D. L.

A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
[CrossRef]

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630 (1975).
[CrossRef]

Moran, M. J.

M. J. Moran, C.-Y. She, R. L. Carmen, “Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser system related materials,” IEEE J. Quantum Electron. QE-11, 259 (1975).
[CrossRef]

Sauteret, C.

C. Sauteret et al., “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36, 956 (1976).
[CrossRef]

She, C.-Y.

M. J. Moran, C.-Y. She, R. L. Carmen, “Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser system related materials,” IEEE J. Quantum Electron. QE-11, 259 (1975).
[CrossRef]

Simon, H. J.

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630 (1975).
[CrossRef]

Smith, P. W.

P. W. Smith, W. J. Tomlinson, P. J. Maloney, “Waveguide nonlinear interface devices,” J. Opt. Soc. Am. 70, 658 (1980).

P. W. Smith et al., “Optical bistability at a nonlinear interface,” Appl. Phys. Lett. 35, 846 (1979).
[CrossRef]

Tomlinson, W. J.

P. W. Smith, W. J. Tomlinson, P. J. Maloney, “Waveguide nonlinear interface devices,” J. Opt. Soc. Am. 70, 658 (1980).

Watson, J. G.

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630 (1975).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Macmillan, New York, 1965), p. 62.

Wysin, G. M.

G. M. Wysin, “Optical bistability with surface plasmons,” M.S. thesis, University of Toledo, Toledo, Ohio (1980).

Am. J. Phys. (1)

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630 (1975).
[CrossRef]

Appl. Phys. Lett. (1)

P. W. Smith et al., “Optical bistability at a nonlinear interface,” Appl. Phys. Lett. 35, 846 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. J. Moran, C.-Y. She, R. L. Carmen, “Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser system related materials,” IEEE J. Quantum Electron. QE-11, 259 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

P. W. Smith, W. J. Tomlinson, P. J. Maloney, “Waveguide nonlinear interface devices,” J. Opt. Soc. Am. 70, 658 (1980).

Phys. Rev. B (2)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392 (1975).
[CrossRef]

Phys. Rev. Lett. (1)

C. Sauteret et al., “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36, 956 (1976).
[CrossRef]

Sov. Phys. JETP (1)

A. E. Kaplan, “Theory of hysteresis reflection and refraction of light by a boundary of a nonlinear medium,” Sov. Phys. JETP 45, 896 (1977).

Other (2)

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Macmillan, New York, 1965), p. 62.

G. M. Wysin, “Optical bistability with surface plasmons,” M.S. thesis, University of Toledo, Toledo, Ohio (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Kretschmann configuration for surface-plasmon excitation at interface with Kerr nonlinear dielectric.

Fig. 2
Fig. 2

Reflectance versus dimensionless incident intensity with surface-plasmon excitation. Arrows indicate directions around hysteresis loop at switching points. Numerical parameters given in text.

Fig. 3
Fig. 3

Critical switching intensity versus incidence angle offset from plasmon angle. Positive (negative) angle offset for positive (negative) nonlinear medium. All other numerical parameters are the same as in Fig. 2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r E r E i = r 12 + r 23 e i 2 k d 1 + r I 2 r 23 e i 2 k d
t E t E i = t 12 t 23 e i 2 k d 1 + r 12 r 23 e i 2 k d .
U i α t 0 | E i | 2 , U r α t 0 | E r | 2 , U t α t 0 | E t | 2 .
U i , r = 1 4 U t | i t 0 m [ m i cos ( k d ) i sin ( k d ) sec θ i m i sin 2 θ i ] 1 + U t + [ cos ( k d ) sec θ i i m i sin ( k d ) × ( m i sin 2 θ i ) 1 / 2 ] 1 i t 0 ( sin 2 θ i 1 + U t ) | 2 .

Metrics