Abstract

A new technique for achieving distortion-free pulse propagation through single-mode optical fibers is demonstrated. Mode-locked dye-laser pulses with 3.3-psec pulse widths and a wavelength of 5878 Å were propagated through a 325-m single-mode optical fiber and emerged with 13-psec pulse widths. These output pulses were recompressed to their original 3.3-psec pulse widths by passage through a 50-cm near-resonant atomic sodium-vapor delay line.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kawana et al., “Pulse broadening in long-span single-mode fibers around a material-dispersion-free wavelength,” Opt. Lett 2, 106–108 (1978).
  2. D. M. Bloom et al., “Direct demonstration of distortionless picosecond-pulse propagation in kilometer-length optical fibers,” Opt. Lett. 4, 297–299 (1979).
    [CrossRef] [PubMed]
  3. D. Grischkowsky, “Optical pulse compression,” Appl. Phys. Lett. 25, 566–568 (1974).
    [CrossRef]
  4. J. E. Bjorkholm, E. H. Turner, D. B. Pearson, “Conversion of c.w. light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26, 564–566 (1975).
    [CrossRef]
  5. J. K. Wigmore, D. Grischkowsky, “Temporal compression of light,” IEEE J. Quantum Electron. QE-14, 310–315 (1978).
    [CrossRef]
  6. J. R. Klauder et al., “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).
  7. J. A. Giordamine, M. A. Duguay, J. W. Hansen, “Compression of optical pulses,” IEEE J. Quantum Electron. QE-4, 252–255 (1968).
    [CrossRef]
  8. E. B. Treacy, “Compression of picosecond light pulses,” Phys. Lett. 28A, 34–35 (1968).
  9. M. A. Duguay, J. W. Hansen, “Compression of pulses from a mode-locked He–Ne laser,” Appl. Phys. Lett. 14, 14–15 (1969).
    [CrossRef]
  10. T. Suzuki, T. Fukumoto, “Use of chirp pulses to improve the pulse transmission characteristics in a dielectric optical waveguide,” Electron. Commun. Jpn. 59-C, 117–125 (1976).
  11. J. V. Wright, B. P. Nelson, “Pulse compression in optical fibers,” Electron. Lett. 13, 361–363 (1977).
    [CrossRef]
  12. This measured linewidth is larger than the linewidth deduced from the output pulse width from the fiber, knowing the temporal dispersion of the fiber to be 12 psec/Å. The explanation for this discrepancy, we believe, is that the laser frequency jitters from pulse to pulse during the exposure time of the interferogram. This jitter leads to an apparently larger linewidth. However, the output of the fiber is not affected by this jitter, and the width of the output pulses provides a measure of the actual bandwidth of the individual pulses.
  13. It is of interest to point out that we initially tried a cross-correlation scheme similar to that of Ref. 2. For our measurement we used noncollinear mixing of relatively strong undelayed probing pulses with the relatively weak delayed pulses. Passage through the fiber introduced a delay of approximately 1.5 μsec. We were forced to abandon this approach because the relative jitter (typically ±2 psec) between the two pulse trains prevented accurate measurement of the recompressed output pulse widths.
  14. R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [CrossRef]
  15. This value of absorption can be significantly reduced by reducing the number density N and increasing the path length. This is because we are operating in the resonant collision-broadening regime, where the absorption coefficient on the wings of the line that is due to these resonant collisions is proportional to the square of N.
  16. E. P. Ippen, D. J. Eilenberger, R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–269 (1980).
    [CrossRef]

1980 (1)

E. P. Ippen, D. J. Eilenberger, R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–269 (1980).
[CrossRef]

1979 (1)

1978 (3)

A. Kawana et al., “Pulse broadening in long-span single-mode fibers around a material-dispersion-free wavelength,” Opt. Lett 2, 106–108 (1978).

J. K. Wigmore, D. Grischkowsky, “Temporal compression of light,” IEEE J. Quantum Electron. QE-14, 310–315 (1978).
[CrossRef]

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

1977 (1)

J. V. Wright, B. P. Nelson, “Pulse compression in optical fibers,” Electron. Lett. 13, 361–363 (1977).
[CrossRef]

1976 (1)

T. Suzuki, T. Fukumoto, “Use of chirp pulses to improve the pulse transmission characteristics in a dielectric optical waveguide,” Electron. Commun. Jpn. 59-C, 117–125 (1976).

1975 (1)

J. E. Bjorkholm, E. H. Turner, D. B. Pearson, “Conversion of c.w. light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26, 564–566 (1975).
[CrossRef]

1974 (1)

D. Grischkowsky, “Optical pulse compression,” Appl. Phys. Lett. 25, 566–568 (1974).
[CrossRef]

1969 (1)

M. A. Duguay, J. W. Hansen, “Compression of pulses from a mode-locked He–Ne laser,” Appl. Phys. Lett. 14, 14–15 (1969).
[CrossRef]

1968 (2)

J. A. Giordamine, M. A. Duguay, J. W. Hansen, “Compression of optical pulses,” IEEE J. Quantum Electron. QE-4, 252–255 (1968).
[CrossRef]

E. B. Treacy, “Compression of picosecond light pulses,” Phys. Lett. 28A, 34–35 (1968).

1960 (1)

J. R. Klauder et al., “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).

Bjorkholm, J. E.

J. E. Bjorkholm, E. H. Turner, D. B. Pearson, “Conversion of c.w. light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26, 564–566 (1975).
[CrossRef]

Bloom, D. M.

Dixon, R. W.

E. P. Ippen, D. J. Eilenberger, R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–269 (1980).
[CrossRef]

Duguay, M. A.

M. A. Duguay, J. W. Hansen, “Compression of pulses from a mode-locked He–Ne laser,” Appl. Phys. Lett. 14, 14–15 (1969).
[CrossRef]

J. A. Giordamine, M. A. Duguay, J. W. Hansen, “Compression of optical pulses,” IEEE J. Quantum Electron. QE-4, 252–255 (1968).
[CrossRef]

Eilenberger, D. J.

E. P. Ippen, D. J. Eilenberger, R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–269 (1980).
[CrossRef]

Fukumoto, T.

T. Suzuki, T. Fukumoto, “Use of chirp pulses to improve the pulse transmission characteristics in a dielectric optical waveguide,” Electron. Commun. Jpn. 59-C, 117–125 (1976).

Giordamine, J. A.

J. A. Giordamine, M. A. Duguay, J. W. Hansen, “Compression of optical pulses,” IEEE J. Quantum Electron. QE-4, 252–255 (1968).
[CrossRef]

Grischkowsky, D.

J. K. Wigmore, D. Grischkowsky, “Temporal compression of light,” IEEE J. Quantum Electron. QE-14, 310–315 (1978).
[CrossRef]

D. Grischkowsky, “Optical pulse compression,” Appl. Phys. Lett. 25, 566–568 (1974).
[CrossRef]

Hansen, J. W.

M. A. Duguay, J. W. Hansen, “Compression of pulses from a mode-locked He–Ne laser,” Appl. Phys. Lett. 14, 14–15 (1969).
[CrossRef]

J. A. Giordamine, M. A. Duguay, J. W. Hansen, “Compression of optical pulses,” IEEE J. Quantum Electron. QE-4, 252–255 (1968).
[CrossRef]

Ippen, E. P.

E. P. Ippen, D. J. Eilenberger, R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–269 (1980).
[CrossRef]

Kawana, A.

A. Kawana et al., “Pulse broadening in long-span single-mode fibers around a material-dispersion-free wavelength,” Opt. Lett 2, 106–108 (1978).

Klauder, J. R.

J. R. Klauder et al., “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).

Lin, C.

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Nelson, B. P.

J. V. Wright, B. P. Nelson, “Pulse compression in optical fibers,” Electron. Lett. 13, 361–363 (1977).
[CrossRef]

Pearson, D. B.

J. E. Bjorkholm, E. H. Turner, D. B. Pearson, “Conversion of c.w. light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26, 564–566 (1975).
[CrossRef]

Stolen, R. H.

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Suzuki, T.

T. Suzuki, T. Fukumoto, “Use of chirp pulses to improve the pulse transmission characteristics in a dielectric optical waveguide,” Electron. Commun. Jpn. 59-C, 117–125 (1976).

Treacy, E. B.

E. B. Treacy, “Compression of picosecond light pulses,” Phys. Lett. 28A, 34–35 (1968).

Turner, E. H.

J. E. Bjorkholm, E. H. Turner, D. B. Pearson, “Conversion of c.w. light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26, 564–566 (1975).
[CrossRef]

Wigmore, J. K.

J. K. Wigmore, D. Grischkowsky, “Temporal compression of light,” IEEE J. Quantum Electron. QE-14, 310–315 (1978).
[CrossRef]

Wright, J. V.

J. V. Wright, B. P. Nelson, “Pulse compression in optical fibers,” Electron. Lett. 13, 361–363 (1977).
[CrossRef]

Appl. Phys. Lett. (4)

D. Grischkowsky, “Optical pulse compression,” Appl. Phys. Lett. 25, 566–568 (1974).
[CrossRef]

J. E. Bjorkholm, E. H. Turner, D. B. Pearson, “Conversion of c.w. light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26, 564–566 (1975).
[CrossRef]

M. A. Duguay, J. W. Hansen, “Compression of pulses from a mode-locked He–Ne laser,” Appl. Phys. Lett. 14, 14–15 (1969).
[CrossRef]

E. P. Ippen, D. J. Eilenberger, R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–269 (1980).
[CrossRef]

Bell Syst. Tech. J. (1)

J. R. Klauder et al., “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).

Electron. Commun. Jpn. (1)

T. Suzuki, T. Fukumoto, “Use of chirp pulses to improve the pulse transmission characteristics in a dielectric optical waveguide,” Electron. Commun. Jpn. 59-C, 117–125 (1976).

Electron. Lett. (1)

J. V. Wright, B. P. Nelson, “Pulse compression in optical fibers,” Electron. Lett. 13, 361–363 (1977).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. K. Wigmore, D. Grischkowsky, “Temporal compression of light,” IEEE J. Quantum Electron. QE-14, 310–315 (1978).
[CrossRef]

J. A. Giordamine, M. A. Duguay, J. W. Hansen, “Compression of optical pulses,” IEEE J. Quantum Electron. QE-4, 252–255 (1968).
[CrossRef]

Opt. Lett (1)

A. Kawana et al., “Pulse broadening in long-span single-mode fibers around a material-dispersion-free wavelength,” Opt. Lett 2, 106–108 (1978).

Opt. Lett. (1)

Phys. Lett. (1)

E. B. Treacy, “Compression of picosecond light pulses,” Phys. Lett. 28A, 34–35 (1968).

Phys. Rev. A (1)

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Other (3)

This value of absorption can be significantly reduced by reducing the number density N and increasing the path length. This is because we are operating in the resonant collision-broadening regime, where the absorption coefficient on the wings of the line that is due to these resonant collisions is proportional to the square of N.

This measured linewidth is larger than the linewidth deduced from the output pulse width from the fiber, knowing the temporal dispersion of the fiber to be 12 psec/Å. The explanation for this discrepancy, we believe, is that the laser frequency jitters from pulse to pulse during the exposure time of the interferogram. This jitter leads to an apparently larger linewidth. However, the output of the fiber is not affected by this jitter, and the width of the output pulses provides a measure of the actual bandwidth of the individual pulses.

It is of interest to point out that we initially tried a cross-correlation scheme similar to that of Ref. 2. For our measurement we used noncollinear mixing of relatively strong undelayed probing pulses with the relatively weak delayed pulses. Passage through the fiber introduced a delay of approximately 1.5 μsec. We were forced to abandon this approach because the relative jitter (typically ±2 psec) between the two pulse trains prevented accurate measurement of the recompressed output pulse widths.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Autocorrelation pulse-width measurements. Each large division corresponds to 1 mm of travel (6.7-psec delay) of the retroreflector shown in Fig. 3. (a) Mode-locked dye-laser 3.3-psec output pulses, (b) 13.0-psec output pulses after passage through the 325-m single-mode optical fiber, and (c) recompressed 3.3-psec output pulses after passage through the optical fiber and the near-resonant atomic sodium dispersive delay line.

Fig. 2
Fig. 2

Schematic diagram of the experiment.

Fig. 3
Fig. 3

Temporal delay versus wavelength of the combination of the 325-m single-mode optical fiber and the 50-cm near-resonant atomic sodium-vapor dispersive delay line.

Metrics