Abstract

Raman scattering from the major components of the atmosphere is observed at daytime, using a frequency-quadrupled YAG laser as source. A method to calculate the water-vapor-mixing ratio with the O2, N2, and H2O Raman-lidar returns is presented that takes into account the ozone ultraviolet attenuation. Water-vapor experimental profiles are obtained up to 1000 m with 30-m resolution; accuracy is about 10% at a range of 500 m. Starting from these results, a numerical study is made to assess the possibilities for an improved Raman-lidar system.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Melfi, J. Lawrence, M. McCormick, “Observations of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295 (1969).
    [CrossRef]
  2. S. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605 (1972).
    [CrossRef] [PubMed]
  3. J. Cooney, “Comparisons of water vapor profiles obtained by radiosonde and laser backscatter,” J. Appl. Meteorol. 10, 301 (1971).
    [CrossRef]
  4. R. Strauch, V. Derr, R. Cupp, “Atmospheric water vapor measurement by Raman lidar,” Remote Sensing Environ. 2, 101 (1972).
    [CrossRef]
  5. O. Kotsko, “Determination of the boundary layer humidity with a laser-radar,” Meteorol. Hidrol. 12, 95 (1975).
  6. J. C. Pourny, D. Renaut, A. Orszag, “Raman-lidar humidity sounding of the atmospheric boundary layer,” Appl. Opt. 18, 1141 (1979).
    [CrossRef] [PubMed]
  7. T. Hirschfeld, “Remote spectroscopic analysis of ppm-level air pollutants by Raman spectroscopy,” Appl. Phys. Lett. 22, 38 (1973).
    [CrossRef]
  8. J. Cooney, K. Petri, “Operating characteristics of a UV solar blind lidar,” presented at the 9th International Laser Radar Conference, Munich, July 2–5, 1979.
  9. V. Zakharov, V. Torgovichev, in Remote Sensing of the Atmosphere, A. Fymat, V. Zuev, eds. (Elsevier SPC, Amsterdam, 1978), p. 287.
  10. P. Warneck, F. Marmo, J. Sullivan, “Ultraviolet absorption of SO2: dissociation energies of SO2 and SO,” J. Chem. Phys. 40, 1132 (1964).
    [CrossRef]
  11. R. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  12. G. Megie, Nature 270, 329 (1977).
    [CrossRef]
  13. H. Inaba, T. Kobayasi, “Laser-Raman radar,” Opt. Electron. 4, 101 (1972).
    [CrossRef]
  14. A. Ackerman, in Mesospheric Models and Related Experiments, G. Fiocco, ed. (Reidel, Dordrecht, The Netherlands, 1971), p. 149.
    [CrossRef]

1979 (1)

1977 (1)

G. Megie, Nature 270, 329 (1977).
[CrossRef]

1975 (1)

O. Kotsko, “Determination of the boundary layer humidity with a laser-radar,” Meteorol. Hidrol. 12, 95 (1975).

1974 (1)

R. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

1973 (1)

T. Hirschfeld, “Remote spectroscopic analysis of ppm-level air pollutants by Raman spectroscopy,” Appl. Phys. Lett. 22, 38 (1973).
[CrossRef]

1972 (3)

S. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605 (1972).
[CrossRef] [PubMed]

R. Strauch, V. Derr, R. Cupp, “Atmospheric water vapor measurement by Raman lidar,” Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

H. Inaba, T. Kobayasi, “Laser-Raman radar,” Opt. Electron. 4, 101 (1972).
[CrossRef]

1971 (1)

J. Cooney, “Comparisons of water vapor profiles obtained by radiosonde and laser backscatter,” J. Appl. Meteorol. 10, 301 (1971).
[CrossRef]

1969 (1)

S. Melfi, J. Lawrence, M. McCormick, “Observations of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

1964 (1)

P. Warneck, F. Marmo, J. Sullivan, “Ultraviolet absorption of SO2: dissociation energies of SO2 and SO,” J. Chem. Phys. 40, 1132 (1964).
[CrossRef]

Ackerman, A.

A. Ackerman, in Mesospheric Models and Related Experiments, G. Fiocco, ed. (Reidel, Dordrecht, The Netherlands, 1971), p. 149.
[CrossRef]

Cooney, J.

J. Cooney, “Comparisons of water vapor profiles obtained by radiosonde and laser backscatter,” J. Appl. Meteorol. 10, 301 (1971).
[CrossRef]

J. Cooney, K. Petri, “Operating characteristics of a UV solar blind lidar,” presented at the 9th International Laser Radar Conference, Munich, July 2–5, 1979.

Cupp, R.

R. Strauch, V. Derr, R. Cupp, “Atmospheric water vapor measurement by Raman lidar,” Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

Derr, V.

R. Strauch, V. Derr, R. Cupp, “Atmospheric water vapor measurement by Raman lidar,” Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

Hirschfeld, T.

T. Hirschfeld, “Remote spectroscopic analysis of ppm-level air pollutants by Raman spectroscopy,” Appl. Phys. Lett. 22, 38 (1973).
[CrossRef]

Inaba, H.

H. Inaba, T. Kobayasi, “Laser-Raman radar,” Opt. Electron. 4, 101 (1972).
[CrossRef]

Kobayasi, T.

H. Inaba, T. Kobayasi, “Laser-Raman radar,” Opt. Electron. 4, 101 (1972).
[CrossRef]

Kotsko, O.

O. Kotsko, “Determination of the boundary layer humidity with a laser-radar,” Meteorol. Hidrol. 12, 95 (1975).

Lawrence, J.

S. Melfi, J. Lawrence, M. McCormick, “Observations of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

Marmo, F.

P. Warneck, F. Marmo, J. Sullivan, “Ultraviolet absorption of SO2: dissociation energies of SO2 and SO,” J. Chem. Phys. 40, 1132 (1964).
[CrossRef]

McCormick, M.

S. Melfi, J. Lawrence, M. McCormick, “Observations of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

Megie, G.

G. Megie, Nature 270, 329 (1977).
[CrossRef]

Melfi, S.

S. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605 (1972).
[CrossRef] [PubMed]

S. Melfi, J. Lawrence, M. McCormick, “Observations of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

Orszag, A.

Petri, K.

J. Cooney, K. Petri, “Operating characteristics of a UV solar blind lidar,” presented at the 9th International Laser Radar Conference, Munich, July 2–5, 1979.

Pourny, J. C.

Renaut, D.

Schotland, R.

R. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Strauch, R.

R. Strauch, V. Derr, R. Cupp, “Atmospheric water vapor measurement by Raman lidar,” Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

Sullivan, J.

P. Warneck, F. Marmo, J. Sullivan, “Ultraviolet absorption of SO2: dissociation energies of SO2 and SO,” J. Chem. Phys. 40, 1132 (1964).
[CrossRef]

Torgovichev, V.

V. Zakharov, V. Torgovichev, in Remote Sensing of the Atmosphere, A. Fymat, V. Zuev, eds. (Elsevier SPC, Amsterdam, 1978), p. 287.

Warneck, P.

P. Warneck, F. Marmo, J. Sullivan, “Ultraviolet absorption of SO2: dissociation energies of SO2 and SO,” J. Chem. Phys. 40, 1132 (1964).
[CrossRef]

Zakharov, V.

V. Zakharov, V. Torgovichev, in Remote Sensing of the Atmosphere, A. Fymat, V. Zuev, eds. (Elsevier SPC, Amsterdam, 1978), p. 287.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Melfi, J. Lawrence, M. McCormick, “Observations of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

T. Hirschfeld, “Remote spectroscopic analysis of ppm-level air pollutants by Raman spectroscopy,” Appl. Phys. Lett. 22, 38 (1973).
[CrossRef]

J. Appl. Meteorol. (2)

J. Cooney, “Comparisons of water vapor profiles obtained by radiosonde and laser backscatter,” J. Appl. Meteorol. 10, 301 (1971).
[CrossRef]

R. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

J. Chem. Phys. (1)

P. Warneck, F. Marmo, J. Sullivan, “Ultraviolet absorption of SO2: dissociation energies of SO2 and SO,” J. Chem. Phys. 40, 1132 (1964).
[CrossRef]

Meteorol. Hidrol. (1)

O. Kotsko, “Determination of the boundary layer humidity with a laser-radar,” Meteorol. Hidrol. 12, 95 (1975).

Nature (1)

G. Megie, Nature 270, 329 (1977).
[CrossRef]

Opt. Electron. (1)

H. Inaba, T. Kobayasi, “Laser-Raman radar,” Opt. Electron. 4, 101 (1972).
[CrossRef]

Remote Sensing Environ. (1)

R. Strauch, V. Derr, R. Cupp, “Atmospheric water vapor measurement by Raman lidar,” Remote Sensing Environ. 2, 101 (1972).
[CrossRef]

Other (3)

J. Cooney, K. Petri, “Operating characteristics of a UV solar blind lidar,” presented at the 9th International Laser Radar Conference, Munich, July 2–5, 1979.

V. Zakharov, V. Torgovichev, in Remote Sensing of the Atmosphere, A. Fymat, V. Zuev, eds. (Elsevier SPC, Amsterdam, 1978), p. 287.

A. Ackerman, in Mesospheric Models and Related Experiments, G. Fiocco, ed. (Reidel, Dordrecht, The Netherlands, 1971), p. 149.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Slant-path ozone-integrated content measured from O2 and N2 Raman returns. Lidar elevation angle was 15°. Twenty laser shots were used for each Raman line. The slope of the least-squares-fitted straight line gives an average ozone concentration of 5.2 × 1018 m−3, or about 200 parts in 109.

Fig. 2
Fig. 2

Slant-path water-vapor profile measured from O2, N2, and H2O Raman returns. Lidar elevation angle was 15°. Twenty laser shots were used for O2 and N2 detection and fifty for H2O detection. The H2O mixing ratio has no units, since the lidar has not been calibrated.

Fig. 3
Fig. 3

Expected performance of an improved Raman lidar for water-vapor vertical sounding. The following characteristics were chosen: frequency-quadrupled YAG laser emitting 80-mJ pulses at 10 Hz at 266 nm, 60-cm telescope, UV monochromator with 10% transmission, UV photomultiplier with 25% efficiency. a, Vertical resolution is 30 m and integration time is 5 min; b, vertical resolution is 120 m and integration time is 10 min.

Tables (1)

Tables Icon

Table 1 Main Lidar Characteristics and Useful Spectroscopic Data

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S ( X , z ) S ( Y , z ) = K 1 N ( X , z ) N ( Y , z ) exp [ - Δ σ ( X , Y ) C ( z ) ] ,
C ( z ) = 0 z N ( O 3 , l ) d l .
C ( z ) = 1 Δ σ ( O 2 , N 2 ) ln S ( N 2 , z ) S ( O 2 , z ) + k 2 ,
r ( z ) = k 3 [ S ( O 2 , z ) S ( N 2 , z ) ] γ S ( H 2 O , z ) S ( N 2 , z ) ,
γ = Δ σ ( H 2 O , N 2 ) Δ σ ( N 2 , O 2 ) .

Metrics