Abstract

Fiber-optic rotation sensing with an extrapolated drift of 1 deg/h1/2 is accomplished by operating the Sagnac interferometer from a truly single-mode common input–output port in connection with a phase-modulation scheme and active polarization stabilization.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vali, R. W. Shorthill, Appl. Opt. 15, 1099 (1976).
    [CrossRef] [PubMed]
  2. S. Ezekiel, G. E. Knausenberger, eds., Laser Inertial Rotation Sensors, Proc. Soc. Photo-Opt. Instrum. Eng. 157 (1978).
  3. D. E. Thompson, D. B. Anderson, S. K. Yao, B. R. Youmans, Appl. Phys. Lett. 33, 940 (1978).
    [CrossRef]
  4. R. F. Cahill, E. Udd, Opt. Lett. 4, 93 (1979).
    [CrossRef] [PubMed]
  5. S. H. Lin, T. G. Giallorenzi, Appl. Opt. 18, 915 (1979).
    [CrossRef] [PubMed]
  6. R. Ulrich, M. Johnson, Opt. Lett. 4, 152 (1979).
    [CrossRef] [PubMed]
  7. H. J. Carlin, Proc. IEEE 55, 482 (1967); H. J. Carlin, A. B. Giordano, Network Theory (Prentice-Hall, New York, 1964).
    [CrossRef]
  8. S. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
    [CrossRef] [PubMed]
  9. R. Ulrich, S. C. Rashleigh, submitted to Appl. Opt.
  10. R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
    [CrossRef]

1979 (5)

1978 (2)

S. Ezekiel, G. E. Knausenberger, eds., Laser Inertial Rotation Sensors, Proc. Soc. Photo-Opt. Instrum. Eng. 157 (1978).

D. E. Thompson, D. B. Anderson, S. K. Yao, B. R. Youmans, Appl. Phys. Lett. 33, 940 (1978).
[CrossRef]

1976 (1)

1967 (1)

H. J. Carlin, Proc. IEEE 55, 482 (1967); H. J. Carlin, A. B. Giordano, Network Theory (Prentice-Hall, New York, 1964).
[CrossRef]

Anderson, D. B.

D. E. Thompson, D. B. Anderson, S. K. Yao, B. R. Youmans, Appl. Phys. Lett. 33, 940 (1978).
[CrossRef]

Cahill, R. F.

Carlin, H. J.

H. J. Carlin, Proc. IEEE 55, 482 (1967); H. J. Carlin, A. B. Giordano, Network Theory (Prentice-Hall, New York, 1964).
[CrossRef]

Giallorenzi, T. G.

Johnson, M.

Lin, S. H.

Rashleigh, S. C.

R. Ulrich, S. C. Rashleigh, submitted to Appl. Opt.

Sheem, S. K.

Shorthill, R. W.

Thompson, D. E.

D. E. Thompson, D. B. Anderson, S. K. Yao, B. R. Youmans, Appl. Phys. Lett. 33, 940 (1978).
[CrossRef]

Udd, E.

Ulrich, R.

R. Ulrich, M. Johnson, Opt. Lett. 4, 152 (1979).
[CrossRef] [PubMed]

R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

R. Ulrich, S. C. Rashleigh, submitted to Appl. Opt.

Vali, V.

Yao, S. K.

D. E. Thompson, D. B. Anderson, S. K. Yao, B. R. Youmans, Appl. Phys. Lett. 33, 940 (1978).
[CrossRef]

Youmans, B. R.

D. E. Thompson, D. B. Anderson, S. K. Yao, B. R. Youmans, Appl. Phys. Lett. 33, 940 (1978).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

D. E. Thompson, D. B. Anderson, S. K. Yao, B. R. Youmans, Appl. Phys. Lett. 33, 940 (1978).
[CrossRef]

R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

H. J. Carlin, Proc. IEEE 55, 482 (1967); H. J. Carlin, A. B. Giordano, Network Theory (Prentice-Hall, New York, 1964).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. Ezekiel, G. E. Knausenberger, eds., Laser Inertial Rotation Sensors, Proc. Soc. Photo-Opt. Instrum. Eng. 157 (1978).

Other (1)

R. Ulrich, S. C. Rashleigh, submitted to Appl. Opt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Schematic arrangement of Sagnac interferometer. (b) Recording of output signal V0. For calibration, the interferometer was rotated forward and backward through an angle of 4° at a rate of 0.3 deg/sec.

Fig. 2
Fig. 2

General ray directions at a semitransparent mirror, used as the beam splitter BS1 (schematic).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

a 1 = R 1 ( - ) a 0 ,             c 1 = R 1 ( + ) b 1 + T 21 ( + ) b 2 ;
a 2 = T 12 ( - ) a 0 ,             c 2 = T 12 ( + ) b 1 + R 2 ( + ) b 2 .
a 0 = ( 1 0 ) .
c 1 = [ G exp ( i ϕ ) + H exp ( - i ϕ ) ] a 0 ,
p 0 = g 11 2 + h 11 2 + 2 g 11 h 11 cos ( 2 ϕ - 2 ϕ 0 ) .
p 0 = 4 g 11 2 cos 2 ϕ .
c ˜ 1 = { G exp [ i ϕ - i ψ cos ( 2 π f 0 t 0 - α ) ] + G exp [ - i ϕ - i ψ cos ( 2 π f 0 t 0 + α ) ] } a 0 ,
p ˜ 0 = 4 g 11 2 cos 2 ( ϕ - ψ sin α sin 2 π f 0 t 0 ) .
V 0 = 4 g 11 2 J 1 ( η ) sin 2 ϕ .

Metrics