Abstract

The possibility of detecting magnetic fields by a magnetostrictive straining of optical fibers is investigated. The effect of shot noise and the limiting sensitivity are considered.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951).
  2. J. F. Nye, Physical Properties of Material (Oxford U. Press, Oxford, England, 1957).
  3. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).
  4. A. Papp, K. Kempter, Appl. Opt. 15, 799 (1976).
    [CrossRef] [PubMed]
  5. S. C. Rasleign, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
    [CrossRef]

1979

S. C. Rasleign, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

1976

Bozorth, F. M.

F. M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951).

Kempter, K.

Nye, J. F.

J. F. Nye, Physical Properties of Material (Oxford U. Press, Oxford, England, 1957).

Papp, A.

Rasleign, S. C.

S. C. Rasleign, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

Ulrich, R.

S. C. Rasleign, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

Appl. Opt.

Appl. Phys. Lett.

S. C. Rasleign, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

Other

F. M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951).

J. F. Nye, Physical Properties of Material (Oxford U. Press, Oxford, England, 1957).

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The basic geometry of a silica fiber embedded in magnetostrictive jacket.

Fig. 2
Fig. 2

The magnetostriction of nickel and of 68 permalloy. Data taken from Ref. 1.

Fig. 3
Fig. 3

The effect of applying strains 1 and 3 on the indicatrix of an isotropic material.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

3 Δ l l = κ H 1 / 2 ,
κ - 10 - 5 ( Oe ) - 1 / 2 .
3 = 3 0 + 3 = κ H 0 1 / 2 + κ H 1 2 H 0 1 / 2 ,
3 - 2.89 × 10 - 6 H 1 ( G ) .
2 1 + 3 = 0.
Δ [ 1 n 2 ] i = p i k l k l             ( i = 1 , 2 , , 6 ) ,
Δ [ 1 n 2 ] 1 = ( p 11 + p 12 ) 1 + p 12 3 , Δ [ 1 n 2 ] 2 = ( p 11 + p 12 ) 1 + p 12 3 , Δ [ 1 n 2 ] 3 = 2 p 12 1 + p 11 3 .
Δ n 1 = Δ n 2 = - n 3 2 [ ( p 11 + p 12 ) 1 + p 12 3 ] .
Δ ϕ ω c Δ ( n L ) = 2 π L λ ( Δ L L + Δ n n ) = 2 π n L λ { 3 - n 2 2 [ ( p 11 + p 12 ) 1 + p 12 3 ] } ,
Δ ϕ = 2 π n L λ 0.92 3 .
Δ ϕ ( rad ) = - 2.44 × 10 - 5 ( L λ ) H 1 ( G ) ,
Δ ϕ ( rad ) = - 2.44 × 10 1 H 1 ( G ) L ( m ) .
i s P e η h ν Δ ϕ P e η h ν 2.44 × 10 1 L H 1 .
i n 2 ¯ = 2 e ( P e η h ν ) Δ ν
S N = i s 2 ¯ i N 2 ¯ = P η ( Δ ϕ ) 2 4 h ν Δ ν = 148.8 P η L 2 H i 2 h ν Δ ν .
( H 1 ) min shot noise = 6.7 × 10 - 3 h ν Δ ν P η L 2 .
( H 1 ) min 1.6 × 10 - 12 G .
θ = V H L ,
θ max V H α ,

Metrics