Abstract

The first reported use is described of optogalvanic detection to observe laser-induced, dipole–dipole pair absorption in discharges of barium and helium–barium. Fractional changes in steady-state discharge populations as small as one part in 105 that are due to the laser-induced collision are observed. In both experiments the absorption maxima occur at the predicted (R = ∞) wavelength and have a full width at half-maximum of approximately 15 cm−1.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. I. Gudzenko, S. I. Yakovlenko, Phys. Lett. 46A, 475 (1974).
  2. L. I. Gudzenko, S. I. Yakovlenko, Sov. Phys. JETP 35, 877 (1972).
  3. S. E. Harris, D. B. Lidow, Phys. Rev. Lett. 33, 674 (1974); Phys. Rev. Lett. 34, 172(E) (1975).
    [CrossRef]
  4. S. E. Harris, J. C. White, IEEE J. Quantum Electron. QE-13, 972 (1977).
    [CrossRef]
  5. J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Opt. Lett. 4, 137 (1979).
    [CrossRef] [PubMed]
  6. W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, S. E. Harris, Opt. Lett. 4, 265 (1979).
    [CrossRef] [PubMed]
  7. W. R. Green, M. D. Wright, J. F. Young, S. E. Harris, Phys. Rev. Lett. 43, 120 (1979).
    [CrossRef]
  8. J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Phys. Rev. Lett. 41, 1709 (1978); Phys. Rev. Lett. 42, 480 (E) (1979).
    [CrossRef]
  9. A. P. Thorne, Spectrophysics (Chapman and Hall, London, 1974), p. 307.
  10. G. R. Harrison, ed., MIT Wavelength Tables (MIT Press, Cambridge, Mass., 1969).
  11. W. T. Silfvast, Phys. Rev. Lett. 27, 1489 (1971).
    [CrossRef]
  12. L. J. Zych, J. Lukasik, J. F. Young, S. E. Harris, Phys. Rev. Lett. 40, 1493 (1978).
    [CrossRef]

1979 (3)

1978 (2)

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Phys. Rev. Lett. 41, 1709 (1978); Phys. Rev. Lett. 42, 480 (E) (1979).
[CrossRef]

L. J. Zych, J. Lukasik, J. F. Young, S. E. Harris, Phys. Rev. Lett. 40, 1493 (1978).
[CrossRef]

1977 (1)

S. E. Harris, J. C. White, IEEE J. Quantum Electron. QE-13, 972 (1977).
[CrossRef]

1974 (2)

S. E. Harris, D. B. Lidow, Phys. Rev. Lett. 33, 674 (1974); Phys. Rev. Lett. 34, 172(E) (1975).
[CrossRef]

L. I. Gudzenko, S. I. Yakovlenko, Phys. Lett. 46A, 475 (1974).

1972 (1)

L. I. Gudzenko, S. I. Yakovlenko, Sov. Phys. JETP 35, 877 (1972).

1971 (1)

W. T. Silfvast, Phys. Rev. Lett. 27, 1489 (1971).
[CrossRef]

Green, W. R.

W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, S. E. Harris, Opt. Lett. 4, 265 (1979).
[CrossRef] [PubMed]

W. R. Green, M. D. Wright, J. F. Young, S. E. Harris, Phys. Rev. Lett. 43, 120 (1979).
[CrossRef]

Gudzenko, L. I.

L. I. Gudzenko, S. I. Yakovlenko, Phys. Lett. 46A, 475 (1974).

L. I. Gudzenko, S. I. Yakovlenko, Sov. Phys. JETP 35, 877 (1972).

Harris, S. E.

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Opt. Lett. 4, 137 (1979).
[CrossRef] [PubMed]

W. R. Green, M. D. Wright, J. F. Young, S. E. Harris, Phys. Rev. Lett. 43, 120 (1979).
[CrossRef]

W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, S. E. Harris, Opt. Lett. 4, 265 (1979).
[CrossRef] [PubMed]

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Phys. Rev. Lett. 41, 1709 (1978); Phys. Rev. Lett. 42, 480 (E) (1979).
[CrossRef]

L. J. Zych, J. Lukasik, J. F. Young, S. E. Harris, Phys. Rev. Lett. 40, 1493 (1978).
[CrossRef]

S. E. Harris, J. C. White, IEEE J. Quantum Electron. QE-13, 972 (1977).
[CrossRef]

S. E. Harris, D. B. Lidow, Phys. Rev. Lett. 33, 674 (1974); Phys. Rev. Lett. 34, 172(E) (1975).
[CrossRef]

Lidow, D. B.

S. E. Harris, D. B. Lidow, Phys. Rev. Lett. 33, 674 (1974); Phys. Rev. Lett. 34, 172(E) (1975).
[CrossRef]

Lukasik, J.

W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, S. E. Harris, Opt. Lett. 4, 265 (1979).
[CrossRef] [PubMed]

L. J. Zych, J. Lukasik, J. F. Young, S. E. Harris, Phys. Rev. Lett. 40, 1493 (1978).
[CrossRef]

Silfvast, W. T.

W. T. Silfvast, Phys. Rev. Lett. 27, 1489 (1971).
[CrossRef]

Thorne, A. P.

A. P. Thorne, Spectrophysics (Chapman and Hall, London, 1974), p. 307.

White, J. C.

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Opt. Lett. 4, 137 (1979).
[CrossRef] [PubMed]

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Phys. Rev. Lett. 41, 1709 (1978); Phys. Rev. Lett. 42, 480 (E) (1979).
[CrossRef]

S. E. Harris, J. C. White, IEEE J. Quantum Electron. QE-13, 972 (1977).
[CrossRef]

Wright, M. D.

W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, S. E. Harris, Opt. Lett. 4, 265 (1979).
[CrossRef] [PubMed]

W. R. Green, M. D. Wright, J. F. Young, S. E. Harris, Phys. Rev. Lett. 43, 120 (1979).
[CrossRef]

Yakovlenko, S. I.

L. I. Gudzenko, S. I. Yakovlenko, Phys. Lett. 46A, 475 (1974).

L. I. Gudzenko, S. I. Yakovlenko, Sov. Phys. JETP 35, 877 (1972).

Young, J. F.

W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, S. E. Harris, Opt. Lett. 4, 265 (1979).
[CrossRef] [PubMed]

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Opt. Lett. 4, 137 (1979).
[CrossRef] [PubMed]

W. R. Green, M. D. Wright, J. F. Young, S. E. Harris, Phys. Rev. Lett. 43, 120 (1979).
[CrossRef]

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Phys. Rev. Lett. 41, 1709 (1978); Phys. Rev. Lett. 42, 480 (E) (1979).
[CrossRef]

L. J. Zych, J. Lukasik, J. F. Young, S. E. Harris, Phys. Rev. Lett. 40, 1493 (1978).
[CrossRef]

Zdasiuk, G. A.

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Opt. Lett. 4, 137 (1979).
[CrossRef] [PubMed]

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Phys. Rev. Lett. 41, 1709 (1978); Phys. Rev. Lett. 42, 480 (E) (1979).
[CrossRef]

Zych, L. J.

L. J. Zych, J. Lukasik, J. F. Young, S. E. Harris, Phys. Rev. Lett. 40, 1493 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. E. Harris, J. C. White, IEEE J. Quantum Electron. QE-13, 972 (1977).
[CrossRef]

Opt. Lett. (2)

Phys. Lett. (1)

L. I. Gudzenko, S. I. Yakovlenko, Phys. Lett. 46A, 475 (1974).

Phys. Rev. Lett. (5)

W. T. Silfvast, Phys. Rev. Lett. 27, 1489 (1971).
[CrossRef]

L. J. Zych, J. Lukasik, J. F. Young, S. E. Harris, Phys. Rev. Lett. 40, 1493 (1978).
[CrossRef]

W. R. Green, M. D. Wright, J. F. Young, S. E. Harris, Phys. Rev. Lett. 43, 120 (1979).
[CrossRef]

J. C. White, G. A. Zdasiuk, J. F. Young, S. E. Harris, Phys. Rev. Lett. 41, 1709 (1978); Phys. Rev. Lett. 42, 480 (E) (1979).
[CrossRef]

S. E. Harris, D. B. Lidow, Phys. Rev. Lett. 33, 674 (1974); Phys. Rev. Lett. 34, 172(E) (1975).
[CrossRef]

Sov. Phys. JETP (1)

L. I. Gudzenko, S. I. Yakovlenko, Sov. Phys. JETP 35, 877 (1972).

Other (2)

A. P. Thorne, Spectrophysics (Chapman and Hall, London, 1974), p. 307.

G. R. Harrison, ed., MIT Wavelength Tables (MIT Press, Cambridge, Mass., 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Pertinent Ba energy levels for the observation of dipole–dipole pair absorption. During the collision of two Ba atoms, a photon at 3394 Å is absorbed, resulting in the simultaneous excitation of one Ba atom to the 6 p P 1 1 level and the other Ba atom to the 5d 1D2 level.

Fig. 2
Fig. 2

Pertinent He and Ba energy levels for the observation of dipole–dipole laser-induced collision. During the collision of an excited He 2s 1S atom with a ground-state Ba atom, a photon at 6151 Å is absorbed, resulting in the simultaneous excitation of the He atom to the 2p 1P° level and the Ba atom to the 5d 1D2 level.

Fig. 3
Fig. 3

Configuration of the metal-vapor cell used for optogalvanic detection.

Fig. 4
Fig. 4

A, observed Ba–Ba pair absorption at 3394 Å at a Ba density of 9 × 1016 atoms/cm4. The two narrow absorptions at 3393 and 3390 Å correspond to tabulated Ca transitions (a trace-cell impurity). The broad absorption at 3386 Å is unexplained. B, observed Ba–Ba pair absorption for a Ba density of 5 × 1015 atoms/cm3. The vertical sensitivity has been increased approximately a factor of 1000.

Fig. 5
Fig. 5

Observed He–Ba laser-induced collision at 6151 Å. The two narrow absorptions at 6161 and 6164Å correspond to tabulated Ca transitions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ba ( 6 s 2 S 1 0 ) + Ba ( 6 s 2 S 1 0 ) + ω ( 3394 Å ) Ba ( 6 p P 1 1 ) + Ba ( 5 d D 1 2 )
He ( 2 s S 1 ) + Ba ( 6 s 2 S 1 0 ) + ω ( 6151 Å ) He ( 2 p P 1 ) + Ba ( 5 d D 1 2 ) .
F A ( ω ) = N B σ C ( P / A , ω ) V ¯ τ .

Metrics