Abstract

Dependence of phase-conjugate wave-front reflectivity on the spatial frequency of the dynamic hologram recorded in Bi12SiO20 crystals is analyzed. Depending on the respective values of applied field E0 and fringe spacing Λ, drift or diffusion of the photocarriers dominates the space-charge buildup and affects the phase-conjugate wave-front intensity differently. It is demonstrated that the modulation transfer function of the coherent four-wave process mixing can be controlled by the amplitude of externally applied field E0. Experimental results are interpreted on the basis of the dynamic theory of Kukhtarev et al.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Huignard, F. Micheron, Appl. Phys. Lett. 29, 591–593 (1976).
    [CrossRef]
  2. J. P. Huignard, J. P. Herriau, T. Valentin, Appl. Opt. 16, 2796–2798 (1977).
    [CrossRef] [PubMed]
  3. A. Yariv, IEEE J. Quantum Electronics QE-14, 650–660 (1978).
    [CrossRef]
  4. J. P. Huignard, J. P. Herriau, Appl. Opt. 17, 2671–2672 (1978).
    [CrossRef] [PubMed]
  5. J. P. Huignard, J. P. Herriau, P. Aubourg, E. Spitz, Opt. Lett. 4, 21–23 (1979).
    [CrossRef] [PubMed]
  6. A. M. Glass, Opt. Eng. 17, 470–479 (1978).
  7. N. Kukhtarev, V. Markov, S. Odulov, Opt. Commun. 23, 338–343 (1977).
    [CrossRef]
  8. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii, Ferroelectrics 22, 949–960, 961–>964 (1979).
    [CrossRef]
  9. V. Vinetskii, N. Kukhtarev, M. Soskin, Sov. J. Quantum Electron. 7, 1270 (1977).
    [CrossRef]
  10. V. Markov, S. Odulov, M. Soskin, Opt. Laser Technol. 11, 95–99 (1979).
    [CrossRef]
  11. A. Krumins, P. Günter, Appl. Phys. 19, 153–163 (1979).
    [CrossRef]
  12. G. A. Alphonse, R. C. Alig, D. L. Staebler, W. Phillips, RCA Rev. 36, 213–229 (1975).
  13. R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493–494 (1971).
    [CrossRef]
  14. J. P. Herriau, J. P. Huignard, P. Aubourg, Appl. Opt. 17, 1851–1852 (1978).
    [CrossRef] [PubMed]
  15. N. Kukhtarev, S. Odulov, Opt. Commun., to be published.

1979 (4)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii, Ferroelectrics 22, 949–960, 961–>964 (1979).
[CrossRef]

V. Markov, S. Odulov, M. Soskin, Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

A. Krumins, P. Günter, Appl. Phys. 19, 153–163 (1979).
[CrossRef]

J. P. Huignard, J. P. Herriau, P. Aubourg, E. Spitz, Opt. Lett. 4, 21–23 (1979).
[CrossRef] [PubMed]

1978 (4)

1977 (3)

N. Kukhtarev, V. Markov, S. Odulov, Opt. Commun. 23, 338–343 (1977).
[CrossRef]

V. Vinetskii, N. Kukhtarev, M. Soskin, Sov. J. Quantum Electron. 7, 1270 (1977).
[CrossRef]

J. P. Huignard, J. P. Herriau, T. Valentin, Appl. Opt. 16, 2796–2798 (1977).
[CrossRef] [PubMed]

1976 (1)

J. P. Huignard, F. Micheron, Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

1975 (1)

G. A. Alphonse, R. C. Alig, D. L. Staebler, W. Phillips, RCA Rev. 36, 213–229 (1975).

1971 (1)

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

Aldrich, R. E.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

Alig, R. C.

G. A. Alphonse, R. C. Alig, D. L. Staebler, W. Phillips, RCA Rev. 36, 213–229 (1975).

Alphonse, G. A.

G. A. Alphonse, R. C. Alig, D. L. Staebler, W. Phillips, RCA Rev. 36, 213–229 (1975).

Aubourg, P.

Glass, A. M.

A. M. Glass, Opt. Eng. 17, 470–479 (1978).

Günter, P.

A. Krumins, P. Günter, Appl. Phys. 19, 153–163 (1979).
[CrossRef]

Harvill, M. L.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

Herriau, J. P.

Hou, S. L.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

Huignard, J. P.

Krumins, A.

A. Krumins, P. Günter, Appl. Phys. 19, 153–163 (1979).
[CrossRef]

Kukhtarev, N.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii, Ferroelectrics 22, 949–960, 961–>964 (1979).
[CrossRef]

V. Vinetskii, N. Kukhtarev, M. Soskin, Sov. J. Quantum Electron. 7, 1270 (1977).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odulov, Opt. Commun. 23, 338–343 (1977).
[CrossRef]

N. Kukhtarev, S. Odulov, Opt. Commun., to be published.

Markov, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii, Ferroelectrics 22, 949–960, 961–>964 (1979).
[CrossRef]

V. Markov, S. Odulov, M. Soskin, Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odulov, Opt. Commun. 23, 338–343 (1977).
[CrossRef]

Micheron, F.

J. P. Huignard, F. Micheron, Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

Odulov, S.

V. Markov, S. Odulov, M. Soskin, Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii, Ferroelectrics 22, 949–960, 961–>964 (1979).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odulov, Opt. Commun. 23, 338–343 (1977).
[CrossRef]

N. Kukhtarev, S. Odulov, Opt. Commun., to be published.

Phillips, W.

G. A. Alphonse, R. C. Alig, D. L. Staebler, W. Phillips, RCA Rev. 36, 213–229 (1975).

Soskin, M.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii, Ferroelectrics 22, 949–960, 961–>964 (1979).
[CrossRef]

V. Markov, S. Odulov, M. Soskin, Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

V. Vinetskii, N. Kukhtarev, M. Soskin, Sov. J. Quantum Electron. 7, 1270 (1977).
[CrossRef]

Spitz, E.

Staebler, D. L.

G. A. Alphonse, R. C. Alig, D. L. Staebler, W. Phillips, RCA Rev. 36, 213–229 (1975).

Valentin, T.

Vinetskii, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii, Ferroelectrics 22, 949–960, 961–>964 (1979).
[CrossRef]

V. Vinetskii, N. Kukhtarev, M. Soskin, Sov. J. Quantum Electron. 7, 1270 (1977).
[CrossRef]

Yariv, A.

A. Yariv, IEEE J. Quantum Electronics QE-14, 650–660 (1978).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

A. Krumins, P. Günter, Appl. Phys. 19, 153–163 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

J. P. Huignard, F. Micheron, Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

Ferroelectrics (1)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii, Ferroelectrics 22, 949–960, 961–>964 (1979).
[CrossRef]

IEEE J. Quantum Electronics (1)

A. Yariv, IEEE J. Quantum Electronics QE-14, 650–660 (1978).
[CrossRef]

J. Appl. Phys. (1)

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

Opt. Commun. (1)

N. Kukhtarev, V. Markov, S. Odulov, Opt. Commun. 23, 338–343 (1977).
[CrossRef]

Opt. Eng. (1)

A. M. Glass, Opt. Eng. 17, 470–479 (1978).

Opt. Laser Technol. (1)

V. Markov, S. Odulov, M. Soskin, Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

Opt. Lett. (1)

RCA Rev. (1)

G. A. Alphonse, R. C. Alig, D. L. Staebler, W. Phillips, RCA Rev. 36, 213–229 (1975).

Sov. J. Quantum Electron. (1)

V. Vinetskii, N. Kukhtarev, M. Soskin, Sov. J. Quantum Electron. 7, 1270 (1977).
[CrossRef]

Other (1)

N. Kukhtarev, S. Odulov, Opt. Commun., to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic principle for phase conjugation in BSO crystals. Wave-front reflectivity ρ = Id/I0; crystal size, 10 × 10 × 3 mm3; wavelength, λ0 = 514 nm; absorption coefficient α = 2.1 cm−1; beam ratio, β = I0/IR, β = 1; incident power density, 10 mW cm−2.

Fig. 2
Fig. 2

Wave-front reflectivity versus fringe spacing for different values of applied field E0: dots, experimental points; crosses, theoretical curves.

Fig. 3
Fig. 3

Amplitude modulation transfer function: dots, experimental curves.

Fig. 4
Fig. 4

Wave-front reflectivity versus applied field for different fringe spacings.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

η = 4 β ( 1 + β ) 2 ( δ l ) 2 F 2 E 0 2 + E T 2 ( 1 + E T E q ) 2 + E 0 2 E q 2 exp ( - α l ) ,
δ = n 3 r λ 0 cos θ ,
E T = 2 e k T Λ ,             E q = 2 e 0 r N Λ ,
E T = A Λ - 1 ,             E q = B Λ .
l D = ( 0 r k T e 2 N ) 1 / 2 ,
l d = 0 r 2 e N E 0 .
ρ = 4 β [ 1 + β + exp ( - α l ) ] 2 ( δ l ) 2 F 2 × E 0 2 + E T 2 ( 1 + E T E q ) 2 + E 0 2 E q 2 exp ( - 2 α l ) .
1 cos 2 θ = 4 n 2 Λ 2 4 n 2 Λ 2 - λ 0 2 ,
ρ = R E 0 2 + E T 2 ( 1 + E T E q ) 2 + E 0 2 E q 2 4 n 2 Λ 2 4 n 2 Λ 2 - λ 0 2 .
ρ = R A 2 Λ - 2 ( 1 + A B Λ - 2 ) 2 4 n 2 Λ 2 4 n 2 Λ 2 - λ 0 2 .
ρ = R E 0 2 + E T 2 ( 1 + E T E q ) 2 + E 0 2 E q 2 4 n 2 Λ 2 4 n 2 Λ 2 - λ 2 .
ρ = R E 0 2 1 + B - 2 E 0 2 Λ - 2 4 n 2 Λ 2 4 n 2 Λ 2 - λ 2 .
E T = A Λ - 1 ,             A = 2 e k T , E q = B Λ ,             B = 2 e 0 r N , T = 300 K ,             r = 56 ( 12 ) , A = 0.16 V ,             B = 7 × 10 7 V cm - 2 .
E q = 21 kV cm - 1 ,             Λ = 3 μ m ; E q = 70 kV cm - 1 ,             Λ = 10 μ m .

Metrics