Abstract

It has been shown theoretically and experimentally that, in the case of extended ground paths under conditions of strong intensity fluctuations when the atmospheric-turbulence-structure parameter is determined based on the half-width of the mean diffraction picture in the lens focal plane, one should take into account the beam-diffraction parameters and laser-source spatial coherence.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Artem’ev, A. S. Gurvich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14, 734–738 (1971).
  2. R. A. Kazarian, A. S. Gurvich, R. G. Manucharian, E. S. Vartanian, Proc. IEEE 58, 1546–1547 (1970).
    [CrossRef]
  3. A. V. Artem’ev, Radiotekh. Elektron. 14, 544–546 (1969).
  4. A. S. Gurvich, A. I. Kon, V. L. Mironov, S. S. Khmelevtsov, Lazernoe Izluchenie v Turbulentnoi Atmosfere (English translation, Laser Radiation in the Turbulent Atmosphere), V. I. Tatarskii, ed. (Nauka, Moscow, 1976).
  5. A. R. Lewis, V. H. Rumsey, J. Opt. Soc. Am. 67, 178–181 (1977).
    [CrossRef]
  6. N. G. Denisov, V. I. Tatarskii, Izv. Vyssh. Uchebn. Zaved. Radlofiz. 6, 488–494 (1963).
  7. M. S. Belen’kii, V. L. Mironov, In III All-Union Symposium on Laser Radiation Propagation in the Atmosphere, Abstracts of Papers (Tomsk, 1975), pp. 202–203.
  8. M. S. Belen’kii, A. I. Kon, V. L. Mironov, Kvant. Elektron. 4, 517–523 (1977).

1977

A. R. Lewis, V. H. Rumsey, J. Opt. Soc. Am. 67, 178–181 (1977).
[CrossRef]

M. S. Belen’kii, A. I. Kon, V. L. Mironov, Kvant. Elektron. 4, 517–523 (1977).

1971

A. V. Artem’ev, A. S. Gurvich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14, 734–738 (1971).

1970

R. A. Kazarian, A. S. Gurvich, R. G. Manucharian, E. S. Vartanian, Proc. IEEE 58, 1546–1547 (1970).
[CrossRef]

1969

A. V. Artem’ev, Radiotekh. Elektron. 14, 544–546 (1969).

1963

N. G. Denisov, V. I. Tatarskii, Izv. Vyssh. Uchebn. Zaved. Radlofiz. 6, 488–494 (1963).

Artem’ev, A. V.

A. V. Artem’ev, A. S. Gurvich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14, 734–738 (1971).

A. V. Artem’ev, Radiotekh. Elektron. 14, 544–546 (1969).

Belen’kii, M. S.

M. S. Belen’kii, A. I. Kon, V. L. Mironov, Kvant. Elektron. 4, 517–523 (1977).

M. S. Belen’kii, V. L. Mironov, In III All-Union Symposium on Laser Radiation Propagation in the Atmosphere, Abstracts of Papers (Tomsk, 1975), pp. 202–203.

Denisov, N. G.

N. G. Denisov, V. I. Tatarskii, Izv. Vyssh. Uchebn. Zaved. Radlofiz. 6, 488–494 (1963).

Gurvich, A. S.

A. V. Artem’ev, A. S. Gurvich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14, 734–738 (1971).

R. A. Kazarian, A. S. Gurvich, R. G. Manucharian, E. S. Vartanian, Proc. IEEE 58, 1546–1547 (1970).
[CrossRef]

A. S. Gurvich, A. I. Kon, V. L. Mironov, S. S. Khmelevtsov, Lazernoe Izluchenie v Turbulentnoi Atmosfere (English translation, Laser Radiation in the Turbulent Atmosphere), V. I. Tatarskii, ed. (Nauka, Moscow, 1976).

Kazarian, R. A.

R. A. Kazarian, A. S. Gurvich, R. G. Manucharian, E. S. Vartanian, Proc. IEEE 58, 1546–1547 (1970).
[CrossRef]

Khmelevtsov, S. S.

A. S. Gurvich, A. I. Kon, V. L. Mironov, S. S. Khmelevtsov, Lazernoe Izluchenie v Turbulentnoi Atmosfere (English translation, Laser Radiation in the Turbulent Atmosphere), V. I. Tatarskii, ed. (Nauka, Moscow, 1976).

Kon, A. I.

M. S. Belen’kii, A. I. Kon, V. L. Mironov, Kvant. Elektron. 4, 517–523 (1977).

A. S. Gurvich, A. I. Kon, V. L. Mironov, S. S. Khmelevtsov, Lazernoe Izluchenie v Turbulentnoi Atmosfere (English translation, Laser Radiation in the Turbulent Atmosphere), V. I. Tatarskii, ed. (Nauka, Moscow, 1976).

Lewis, A. R.

Manucharian, R. G.

R. A. Kazarian, A. S. Gurvich, R. G. Manucharian, E. S. Vartanian, Proc. IEEE 58, 1546–1547 (1970).
[CrossRef]

Mironov, V. L.

M. S. Belen’kii, A. I. Kon, V. L. Mironov, Kvant. Elektron. 4, 517–523 (1977).

M. S. Belen’kii, V. L. Mironov, In III All-Union Symposium on Laser Radiation Propagation in the Atmosphere, Abstracts of Papers (Tomsk, 1975), pp. 202–203.

A. S. Gurvich, A. I. Kon, V. L. Mironov, S. S. Khmelevtsov, Lazernoe Izluchenie v Turbulentnoi Atmosfere (English translation, Laser Radiation in the Turbulent Atmosphere), V. I. Tatarskii, ed. (Nauka, Moscow, 1976).

Rumsey, V. H.

Tatarskii, V. I.

N. G. Denisov, V. I. Tatarskii, Izv. Vyssh. Uchebn. Zaved. Radlofiz. 6, 488–494 (1963).

Vartanian, E. S.

R. A. Kazarian, A. S. Gurvich, R. G. Manucharian, E. S. Vartanian, Proc. IEEE 58, 1546–1547 (1970).
[CrossRef]

Izv. Vyssh. Uchebn. Zaved. Radiofiz.

A. V. Artem’ev, A. S. Gurvich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14, 734–738 (1971).

Izv. Vyssh. Uchebn. Zaved. Radlofiz.

N. G. Denisov, V. I. Tatarskii, Izv. Vyssh. Uchebn. Zaved. Radlofiz. 6, 488–494 (1963).

J. Opt. Soc. Am.

Kvant. Elektron.

M. S. Belen’kii, A. I. Kon, V. L. Mironov, Kvant. Elektron. 4, 517–523 (1977).

Proc. IEEE

R. A. Kazarian, A. S. Gurvich, R. G. Manucharian, E. S. Vartanian, Proc. IEEE 58, 1546–1547 (1970).
[CrossRef]

Radiotekh. Elektron.

A. V. Artem’ev, Radiotekh. Elektron. 14, 544–546 (1969).

Other

A. S. Gurvich, A. I. Kon, V. L. Mironov, S. S. Khmelevtsov, Lazernoe Izluchenie v Turbulentnoi Atmosfere (English translation, Laser Radiation in the Turbulent Atmosphere), V. I. Tatarskii, ed. (Nauka, Moscow, 1976).

M. S. Belen’kii, V. L. Mironov, In III All-Union Symposium on Laser Radiation Propagation in the Atmosphere, Abstracts of Papers (Tomsk, 1975), pp. 202–203.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The mean intensity distribution in a focal plane of the lens: curve 2, calculation based on a general integral representation for the function Γ2; curve 1, calculation using Eq. (1).

Fig. 2
Fig. 2

Comparison of the Cn parameter values obtained with different diffraction parameters of a laser beam propagating through the atmosphere: 1, measurements with wide collimated Cn1 and diverging Cn1′ beams; 2, measurements with diverging Cn2 and focused Cn2′ beams; 3, straight line, Cn1 = Cn1′; 4, straight line, Cn2 = Cn2′.

Fig. 3
Fig. 3

The values of Cn obtained by using simultaneous measurements in wide, Cn3, and narrow, Cn3′, collimated beams: 1, processing by Eq. (2); 2, processing by Eq. (3) for a plane wave (μ = 1.1); 3 and 4, straight lines, Cn3 = Cn3′.

Fig. 4
Fig. 4

Values of Cn obtained by using simultaneous measurements in diverging single-mode, Cn4, and wide multimode, Cn4′, beams: 1, processing by Eq. (2); 2, processing by Eq. (3) for a plane wave (μ = 1.1); 3 and 4, straight lines, Cn4 = Cn4′.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( y ) I ( 0 ) = V ( y ) = exp ( - k 2 y 2 F 2 P ) ,
P ( ρ 0 ) = [ 1 ρ a 2 + 16 d 2 + ( γ / ρ f 2 ) 2 ( 1 / ρ f 2 + 16 / d 2 ] , ρ f 2 = a 2 [ ( 1 - X f ) 2 + Ω - 2 ( 1 + a 2 / ρ K 2 + 4 3 a 2 ρ 0 2 ) ] , ρ a 2 = ρ f 2 / { ( 1 + a 2 ρ K 2 ) + 4 a 2 ρ 0 2 [ 1 - X f + 1 3 ( X f ) 2 + 1 3 Ω - 2 ( 1 + a 2 ρ K 2 ) ] + 4 3 a 4 ρ 0 4 Ω - 2 } ,
γ = Ω - 1 ( 1 + a 2 ρ K 2 + 2 a 2 ρ 0 2 ) - k a 2 f ( 1 - X f ) .
y 0.5 = 0.83 F P 1 / 2 ( ρ 0 ) k ,
C n 2 = 0.86 μ ( y 0.5 / F ) 5 / 3 2.91 k 1 / 3 X ,
a x / k ρ 0 ,
X k ρ 0 a ρ 0 ,
ρ 0 a ,

Metrics