Abstract

There appear to be limitations in the operation of optical-fiber Sagnac gyro rotation sensors that have imposed a minimum measurable rotation rate that is much higher than that caused by quantum noise. We show that one source of limitation, namely, the superposition of a nonreciprocal pair of waves generated by backward scattering from the incident waves, can result in significant error but can be mitigated by appropriate system design and signal modulation.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vali, R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt. 15, 1099 (1976).
    [CrossRef] [PubMed]
  2. D. E. Thompson et al., “Sagnac fiber-ring interferometer gyro with electronic phase sensing using a (GaAl)As laser,” Appl. Phys. Lett. 33, 940 (1978).
    [CrossRef]
  3. R. F. Cahill, E. Udd, “Phase-nulling fiber-optic laser gyro,” Opt. Lett. 4, 93 (1979).
    [CrossRef] [PubMed]
  4. H. Lefevre, “Optical fiber interferometric gyroscope,” Ph.D. thesis (University of Paris, XI-Orsay, 1979).
  5. H. Arditty et al., “Recent developments in guided waves optical rotation sensors,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1980), paper YuC2.
  6. W. C. Goss et al., “Fiber-optic rotation sensor technology,” Appl. Opt. 19, 852–858 (1980).
    [CrossRef] [PubMed]
  7. R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173–175 (1980).
    [CrossRef] [PubMed]
  8. H. Arditty et al., “Re-entrant fiber-optic approach to rotation sensing,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 138 (1978).
  9. R. Ulrich, M. Johnson, “Fiber-ring interferometer: polarization analysis,” Opt. Lett. 4, 152 (1979).
    [CrossRef] [PubMed]
  10. D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19, 654–655 (1980).
    [CrossRef] [PubMed]
  11. S. C. Lin, T. G. Giallorenzi, “Sensitivity analysis of the Sagnac-effect, optical fiber ring interferometer,” Appl. Opt. 18, 915 (1979).
    [CrossRef] [PubMed]
  12. J. E. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979).

1980 (3)

1979 (3)

1978 (2)

H. Arditty et al., “Re-entrant fiber-optic approach to rotation sensing,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 138 (1978).

D. E. Thompson et al., “Sagnac fiber-ring interferometer gyro with electronic phase sensing using a (GaAl)As laser,” Appl. Phys. Lett. 33, 940 (1978).
[CrossRef]

1976 (1)

Arditty, H.

H. Arditty et al., “Re-entrant fiber-optic approach to rotation sensing,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 138 (1978).

H. Arditty et al., “Recent developments in guided waves optical rotation sensors,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1980), paper YuC2.

Cahill, R. F.

Giallorenzi, T. G.

Goss, W. C.

Johnson, M.

Lefevre, H.

H. Lefevre, “Optical fiber interferometric gyroscope,” Ph.D. thesis (University of Paris, XI-Orsay, 1979).

Lin, S. C.

Midwinter, J. E.

J. E. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979).

Shorthill, R. W.

Shupe, D. M.

Thompson, D. E.

D. E. Thompson et al., “Sagnac fiber-ring interferometer gyro with electronic phase sensing using a (GaAl)As laser,” Appl. Phys. Lett. 33, 940 (1978).
[CrossRef]

Udd, E.

Ulrich, R.

Vali, V.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

D. E. Thompson et al., “Sagnac fiber-ring interferometer gyro with electronic phase sensing using a (GaAl)As laser,” Appl. Phys. Lett. 33, 940 (1978).
[CrossRef]

Opt. Lett. (3)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

H. Arditty et al., “Re-entrant fiber-optic approach to rotation sensing,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 138 (1978).

Other (3)

J. E. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979).

H. Lefevre, “Optical fiber interferometric gyroscope,” Ph.D. thesis (University of Paris, XI-Orsay, 1979).

H. Arditty et al., “Recent developments in guided waves optical rotation sensors,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1980), paper YuC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Fiber-loop Sagnac interferometer. The scatter loss in a fiber that is due to fixed scattering centers, including Rayleigh scattering (the principal loss mechanism in very-low-loss fibers), gives rise to counterrotating secondary waves that are indistinguishable from the signal component that is caused by rotation. Their cumulative effect can be reduced by suitably modulating the input signal. ϕ, phase change that is due to rotation rate. ϕ′, phase change including the secondary wave vectors.

Tables (1)

Tables Icon

Table 1 Parameters for Numerical Estimate

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P s / P 1 1 / 4 G β 2 α s L .
ϕ max = 2 ( P s / P 1 ) 1 / 2 = β ( G α s L ) 1 / 2 ,
Ω max = λ c 2 N ( π D ) 2 β ( G α s L ) 1 / 2 ,
Ω max = λ c β 2 π D ( G α s L ) 1 / 2 .
θ = M 1 / 2 Ω rms ( 2 M ) 1 / 2 Ω max .

Metrics