Abstract

Simultaneous remote measurements of temperature and humidity using a narrow-linewidth, continuously tunable, LiNbO3 optical parametric oscillator as a transmitter source are reported. Relative measurement errors of 1.0°C for temperature and better than 1% for humidity over a 45-sec averaging time are observed. The absolute accuracy is limited by the accuracy of available spectroscopic data.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Baumgartner, R. L. Byer, “Continuously tunable IR lidar with applications to remote measurements of SO2 and CH4,” Appl. Opt. 17, 3555–3561 (1978).
    [CrossRef] [PubMed]
  2. M. Endemann, R. L. Byer, “Remote probing of atmospheric methane over long timescales and high accuracy using widely tunable IR source,” presented at the Ninth International Laser Radar Conference, Munich, 1979.
  3. A. Cohen, J. S. Cooney, K. N. Gelleo, “Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering,” Appl. Opt. 15, 2896–2901 (1976);see also R. Gill et al., J. Appl. Meteorol. 18, 225 (1979).
    [CrossRef] [PubMed]
  4. E. R. Murray, D. D. Powell, J. E. van der Laan, “Measurement of average atmospheric temperature using CO2 laser radar,” Appl. Opt. 19, 1794–1797 (1980).
    [CrossRef] [PubMed]
  5. J. B. Mason, “Lidar measurement of temperature: a new approach,” Appl. Opt. 14, 76–78 (1975).
    [PubMed]
  6. G. K. Schwemmer, T. D. Wilkerson, “Lidar temperature profiling: performance simulations of Mason's method,” Appl. Opt. 18, 3539–3541 (1979).
    [CrossRef] [PubMed]
  7. R. A. McClatchey, J. E. A. Selby, “AFCRL atmospheric absorption line parameter compilation,” AFCRL 73-0086 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).
  8. S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415– 431 (1979).
    [CrossRef]

1980

1979

G. K. Schwemmer, T. D. Wilkerson, “Lidar temperature profiling: performance simulations of Mason's method,” Appl. Opt. 18, 3539–3541 (1979).
[CrossRef] [PubMed]

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415– 431 (1979).
[CrossRef]

1978

1976

1975

Baumgartner, R. A.

Brosnan, S. J.

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415– 431 (1979).
[CrossRef]

Byer, R. L.

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415– 431 (1979).
[CrossRef]

R. A. Baumgartner, R. L. Byer, “Continuously tunable IR lidar with applications to remote measurements of SO2 and CH4,” Appl. Opt. 17, 3555–3561 (1978).
[CrossRef] [PubMed]

M. Endemann, R. L. Byer, “Remote probing of atmospheric methane over long timescales and high accuracy using widely tunable IR source,” presented at the Ninth International Laser Radar Conference, Munich, 1979.

Cohen, A.

Cooney, J. S.

Endemann, M.

M. Endemann, R. L. Byer, “Remote probing of atmospheric methane over long timescales and high accuracy using widely tunable IR source,” presented at the Ninth International Laser Radar Conference, Munich, 1979.

Gelleo, K. N.

Mason, J. B.

McClatchey, R. A.

R. A. McClatchey, J. E. A. Selby, “AFCRL atmospheric absorption line parameter compilation,” AFCRL 73-0086 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

Murray, E. R.

Powell, D. D.

Schwemmer, G. K.

Selby, J. E. A.

R. A. McClatchey, J. E. A. Selby, “AFCRL atmospheric absorption line parameter compilation,” AFCRL 73-0086 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).

van der Laan, J. E.

Wilkerson, T. D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Temperature calibration using spectroscopic data. For only two absorption lines, the temperature dependence is T = C T ̅ + D. The interference of other lines and the second-order effects of the approximation lead to the slightly curved calibration line. Different probing resolutions change the calibration, but temperature shifts are small above −20°C.

Fig. 2
Fig. 2

High-resolution atmospheric scan over 1.55-km path. The OPO linewidth is 0.1 cm−1. The OPO transmission scan (lower trace) is compared with a simulation using AFCRL file data (upper trace).

Fig. 3
Fig. 3

Temperature and absolute humidity measurement from the morning of March 11, 1980. Temperature data are compared with records from thermograph at receiving telescope.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A i ( T ) = NL σ i ( T ) = ln ( S off ) ln ( S i ) ,
σ i ( T ) = σ i ( T 0 ) Q ( T ) exp [ ( E 1 o / k ) ( 1 / T 0 1 / T ) ]
T = T 0 1 K T 0 E 1 o E 2 o [ ln ( A 1 ( T ) A 2 ( T ) ) ln σ 1 ( T 0 ) σ 2 ( T 0 ) ]
T = C T ̅ + D ,

Metrics