Abstract

We demonstrate that holographic speckle-free imaging is possible when a dynamic recording medium, such as a Bi12SiO20 crystal, and a four-wave mixing configuration are used. The method is based on time integration in the conjugate-image plane of N coherent images having an independent speckle pattern. We apply this concept to a real-time optical processing operation. A speckle-free time-averaged interferogram of a vibrating structure is obtained.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, J. Opt. Soc. Am. 66, 1145 (1976);“Laser speckle and related phenomena,”in Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 10–75.
    [CrossRef]
  2. S. Lowenthal, P. Chavel, “Applications of holography and optical data processing,” in Proceedings of the International Conference on Applications of Holography and Optical Data Processing, E. Marom, A. A. Friesem, eds. (Pergamon, London, 1976), pp. 45–55.
  3. A. Kozma, C. R. Christensen, J. Opt. Soc. Am. 66, 1257 (1976).
    [CrossRef]
  4. J. Upatnieks, R. W. Lewis, Appl. Opt. 12, 2161 (1973).
    [CrossRef] [PubMed]
  5. N. George, C. R. Christensen, J. S. Bennett, B. D. Guenther, J. Opt. Soc. Am. 66, 1282 (1976).
    [CrossRef]
  6. R. W. Hellwarth, J. Opt. Soc. Am. 67, 1 (1977).
    [CrossRef]
  7. A. Yariv, IEEE J. Quantum Electron. 14, 650 (1978).
    [CrossRef]
  8. J. P. Huignard, J. P. Herriau, P. Aubourg, E. Spitz, Opt. Lett. 4, 21 (1979).
    [CrossRef] [PubMed]
  9. R. K. Jain, M. B. Klein, Appl. Phys. Lett. 35, 454 (1979).
    [CrossRef]
  10. A. Yariv, Opt. Commun. 25, 23 (1978).
    [CrossRef]
  11. A. Marrakchi, J. P. Huignard, J. P. Herriau, Opt. Commun. 34, 15 (1980).
    [CrossRef]
  12. J. P. Huignard, J. P. Herriau, T. Valentin, Appl. Opt. 16, 2796 (1977).
    [CrossRef] [PubMed]
  13. S. Lowenthal, D. Joyeux, J. Opt. Soc. Am. 61, 847 (1971).
    [CrossRef]

1980 (1)

A. Marrakchi, J. P. Huignard, J. P. Herriau, Opt. Commun. 34, 15 (1980).
[CrossRef]

1979 (2)

1978 (2)

A. Yariv, Opt. Commun. 25, 23 (1978).
[CrossRef]

A. Yariv, IEEE J. Quantum Electron. 14, 650 (1978).
[CrossRef]

1977 (2)

1976 (3)

1973 (1)

1971 (1)

Aubourg, P.

Bennett, J. S.

Chavel, P.

S. Lowenthal, P. Chavel, “Applications of holography and optical data processing,” in Proceedings of the International Conference on Applications of Holography and Optical Data Processing, E. Marom, A. A. Friesem, eds. (Pergamon, London, 1976), pp. 45–55.

Christensen, C. R.

George, N.

Goodman, J. W.

Guenther, B. D.

Hellwarth, R. W.

Herriau, J. P.

Huignard, J. P.

Jain, R. K.

R. K. Jain, M. B. Klein, Appl. Phys. Lett. 35, 454 (1979).
[CrossRef]

Joyeux, D.

Klein, M. B.

R. K. Jain, M. B. Klein, Appl. Phys. Lett. 35, 454 (1979).
[CrossRef]

Kozma, A.

Lewis, R. W.

Lowenthal, S.

S. Lowenthal, D. Joyeux, J. Opt. Soc. Am. 61, 847 (1971).
[CrossRef]

S. Lowenthal, P. Chavel, “Applications of holography and optical data processing,” in Proceedings of the International Conference on Applications of Holography and Optical Data Processing, E. Marom, A. A. Friesem, eds. (Pergamon, London, 1976), pp. 45–55.

Marrakchi, A.

A. Marrakchi, J. P. Huignard, J. P. Herriau, Opt. Commun. 34, 15 (1980).
[CrossRef]

Spitz, E.

Upatnieks, J.

Valentin, T.

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. 14, 650 (1978).
[CrossRef]

A. Yariv, Opt. Commun. 25, 23 (1978).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. K. Jain, M. B. Klein, Appl. Phys. Lett. 35, 454 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, IEEE J. Quantum Electron. 14, 650 (1978).
[CrossRef]

J. Opt. Soc. Am. (5)

Opt. Commun. (2)

A. Yariv, Opt. Commun. 25, 23 (1978).
[CrossRef]

A. Marrakchi, J. P. Huignard, J. P. Herriau, Opt. Commun. 34, 15 (1980).
[CrossRef]

Opt. Lett. (1)

Other (1)

S. Lowenthal, P. Chavel, “Applications of holography and optical data processing,” in Proceedings of the International Conference on Applications of Holography and Optical Data Processing, E. Marom, A. A. Friesem, eds. (Pergamon, London, 1976), pp. 45–55.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Four-wave mixing experiment in BSO crystals showing speckle-noise reduction by integration on an intensity basis of N independent coherent images. Single-mode argon laser source, λ = 514 nm; output power, 600 mW; crystal size, 10 mm × 10 mm; thickness, 3 mm; applied voltage, 6 kV; distance from object slide to BSO crystal, 50 cm.

Fig. 2
Fig. 2

Experimental evidence of signal-to-noise ratio improvement with increasing the number of incoherent superpositions in the detector plane: (a) N = 1, (b) N = 10, (c) N = 100.

Fig. 3
Fig. 3

Speckle-noise suppression with incoherent superpositions of N coherent interferograms of a vibrating mirror illuminated by a diffusing screen: (a) N = 1, (b) N = 9, (c) N = 144.

Metrics