Abstract

Copropagating-beam Doppler-free resonances, observed in fluorescence, are utilized to study vibrational dependence of N2O quadrupole hyperfine structure for several transitions of the (100–001) band. A novel technique is applied to simplify the spectra by using a large intensity ratio for the beams.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Freed, A. Javan, Appl. Phys. Lett. 17, 53 (1970).
    [CrossRef]
  2. J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Javan, J. Mol. Spectrosc. 64, 491 (1977).
    [CrossRef]
  3. M. J. Kelly, J. E. Thomas, J.-P. Monchalin, N. A. Kurnit, A. Javan, Phys. Rev. Lett. 37, 686 (1976).
    [CrossRef]
  4. J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Szöke, A. Javan, Opt. Lett. 1, 5 (1977).
    [CrossRef] [PubMed]
  5. H. R. Schlossberg, A. Javan, Phys. Rev. 150, 267 (1966); Phys. Rev. Lett. 17, 1242 (1966).
    [CrossRef]
  6. M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
    [CrossRef]
  7. Copropagating-wave resonances depend only on the twin-laser difference frequency so long as w32 (u/c) ≪ linewidth, where w32 is the level spacing and u is the thermal speed.
  8. R. G. Brewer, Phys. Rev. Lett. 25, 1639 (1970). See also R. C. Brewer, “Nonlinear infrared spectroscopy,” in Fundamental and Applied Laser Physics, M. S. Feld, A. Javan, N. Kurnit, eds. (Wiley, New York, 1973).
    [CrossRef]
  9. M. Ouhayoun, C. J. Bordé, J. Bordé, Mol. Phys. 33, 597 (1977).
    [CrossRef]
  10. Note that the structure of N2O is NNO.
  11. N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).
  12. This follows from the hermiticity of the dipole operator.
  13. J. Bardeen, C. H. Townes, Phys. Rev. 73, 97 (1948).
    [CrossRef]
  14. It is assumed that the weak wave interacting with a strong transition is weakly saturating. For detailed theoretical analysis see J. E. Thomas, Ph.D. thesis, 1979 (unpublished).
  15. J. M. L. J. Reinartz, W. L. Meerts, A. Dymanus, Chem. Phys. 31, 19 (1978).
    [CrossRef]

1978 (1)

J. M. L. J. Reinartz, W. L. Meerts, A. Dymanus, Chem. Phys. 31, 19 (1978).
[CrossRef]

1977 (3)

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Szöke, A. Javan, Opt. Lett. 1, 5 (1977).
[CrossRef] [PubMed]

M. Ouhayoun, C. J. Bordé, J. Bordé, Mol. Phys. 33, 597 (1977).
[CrossRef]

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Javan, J. Mol. Spectrosc. 64, 491 (1977).
[CrossRef]

1976 (1)

M. J. Kelly, J. E. Thomas, J.-P. Monchalin, N. A. Kurnit, A. Javan, Phys. Rev. Lett. 37, 686 (1976).
[CrossRef]

1970 (2)

C. Freed, A. Javan, Appl. Phys. Lett. 17, 53 (1970).
[CrossRef]

R. G. Brewer, Phys. Rev. Lett. 25, 1639 (1970). See also R. C. Brewer, “Nonlinear infrared spectroscopy,” in Fundamental and Applied Laser Physics, M. S. Feld, A. Javan, N. Kurnit, eds. (Wiley, New York, 1973).
[CrossRef]

1969 (1)

M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
[CrossRef]

1966 (1)

H. R. Schlossberg, A. Javan, Phys. Rev. 150, 267 (1966); Phys. Rev. Lett. 17, 1242 (1966).
[CrossRef]

1948 (1)

J. Bardeen, C. H. Townes, Phys. Rev. 73, 97 (1948).
[CrossRef]

Bardeen, J.

J. Bardeen, C. H. Townes, Phys. Rev. 73, 97 (1948).
[CrossRef]

Bordé, C. J.

M. Ouhayoun, C. J. Bordé, J. Bordé, Mol. Phys. 33, 597 (1977).
[CrossRef]

Bordé, J.

M. Ouhayoun, C. J. Bordé, J. Bordé, Mol. Phys. 33, 597 (1977).
[CrossRef]

Brewer, R. G.

R. G. Brewer, Phys. Rev. Lett. 25, 1639 (1970). See also R. C. Brewer, “Nonlinear infrared spectroscopy,” in Fundamental and Applied Laser Physics, M. S. Feld, A. Javan, N. Kurnit, eds. (Wiley, New York, 1973).
[CrossRef]

Dymanus, A.

J. M. L. J. Reinartz, W. L. Meerts, A. Dymanus, Chem. Phys. 31, 19 (1978).
[CrossRef]

Feld, M. S.

M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
[CrossRef]

Freed, C.

C. Freed, A. Javan, Appl. Phys. Lett. 17, 53 (1970).
[CrossRef]

Javan, A.

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Javan, J. Mol. Spectrosc. 64, 491 (1977).
[CrossRef]

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Szöke, A. Javan, Opt. Lett. 1, 5 (1977).
[CrossRef] [PubMed]

M. J. Kelly, J. E. Thomas, J.-P. Monchalin, N. A. Kurnit, A. Javan, Phys. Rev. Lett. 37, 686 (1976).
[CrossRef]

C. Freed, A. Javan, Appl. Phys. Lett. 17, 53 (1970).
[CrossRef]

M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
[CrossRef]

H. R. Schlossberg, A. Javan, Phys. Rev. 150, 267 (1966); Phys. Rev. Lett. 17, 1242 (1966).
[CrossRef]

Kelly, M. J.

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Javan, J. Mol. Spectrosc. 64, 491 (1977).
[CrossRef]

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Szöke, A. Javan, Opt. Lett. 1, 5 (1977).
[CrossRef] [PubMed]

M. J. Kelly, J. E. Thomas, J.-P. Monchalin, N. A. Kurnit, A. Javan, Phys. Rev. Lett. 37, 686 (1976).
[CrossRef]

Kurnit, N. A.

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Javan, J. Mol. Spectrosc. 64, 491 (1977).
[CrossRef]

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Szöke, A. Javan, Opt. Lett. 1, 5 (1977).
[CrossRef] [PubMed]

M. J. Kelly, J. E. Thomas, J.-P. Monchalin, N. A. Kurnit, A. Javan, Phys. Rev. Lett. 37, 686 (1976).
[CrossRef]

Meerts, W. L.

J. M. L. J. Reinartz, W. L. Meerts, A. Dymanus, Chem. Phys. 31, 19 (1978).
[CrossRef]

Monchalin, J.-P.

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Szöke, A. Javan, Opt. Lett. 1, 5 (1977).
[CrossRef] [PubMed]

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Javan, J. Mol. Spectrosc. 64, 491 (1977).
[CrossRef]

M. J. Kelly, J. E. Thomas, J.-P. Monchalin, N. A. Kurnit, A. Javan, Phys. Rev. Lett. 37, 686 (1976).
[CrossRef]

Ouhayoun, M.

M. Ouhayoun, C. J. Bordé, J. Bordé, Mol. Phys. 33, 597 (1977).
[CrossRef]

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).

Reinartz, J. M. L. J.

J. M. L. J. Reinartz, W. L. Meerts, A. Dymanus, Chem. Phys. 31, 19 (1978).
[CrossRef]

Schlossberg, H. R.

H. R. Schlossberg, A. Javan, Phys. Rev. 150, 267 (1966); Phys. Rev. Lett. 17, 1242 (1966).
[CrossRef]

Szöke, A.

Thomas, J. E.

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Szöke, A. Javan, Opt. Lett. 1, 5 (1977).
[CrossRef] [PubMed]

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Javan, J. Mol. Spectrosc. 64, 491 (1977).
[CrossRef]

M. J. Kelly, J. E. Thomas, J.-P. Monchalin, N. A. Kurnit, A. Javan, Phys. Rev. Lett. 37, 686 (1976).
[CrossRef]

It is assumed that the weak wave interacting with a strong transition is weakly saturating. For detailed theoretical analysis see J. E. Thomas, Ph.D. thesis, 1979 (unpublished).

Townes, C. H.

J. Bardeen, C. H. Townes, Phys. Rev. 73, 97 (1948).
[CrossRef]

Appl. Phys. Lett. (1)

C. Freed, A. Javan, Appl. Phys. Lett. 17, 53 (1970).
[CrossRef]

Chem. Phys. (1)

J. M. L. J. Reinartz, W. L. Meerts, A. Dymanus, Chem. Phys. 31, 19 (1978).
[CrossRef]

J. Mol. Spectrosc. (1)

J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Javan, J. Mol. Spectrosc. 64, 491 (1977).
[CrossRef]

Mol. Phys. (1)

M. Ouhayoun, C. J. Bordé, J. Bordé, Mol. Phys. 33, 597 (1977).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (3)

H. R. Schlossberg, A. Javan, Phys. Rev. 150, 267 (1966); Phys. Rev. Lett. 17, 1242 (1966).
[CrossRef]

M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
[CrossRef]

J. Bardeen, C. H. Townes, Phys. Rev. 73, 97 (1948).
[CrossRef]

Phys. Rev. Lett. (2)

M. J. Kelly, J. E. Thomas, J.-P. Monchalin, N. A. Kurnit, A. Javan, Phys. Rev. Lett. 37, 686 (1976).
[CrossRef]

R. G. Brewer, Phys. Rev. Lett. 25, 1639 (1970). See also R. C. Brewer, “Nonlinear infrared spectroscopy,” in Fundamental and Applied Laser Physics, M. S. Feld, A. Javan, N. Kurnit, eds. (Wiley, New York, 1973).
[CrossRef]

Other (5)

It is assumed that the weak wave interacting with a strong transition is weakly saturating. For detailed theoretical analysis see J. E. Thomas, Ph.D. thesis, 1979 (unpublished).

Copropagating-wave resonances depend only on the twin-laser difference frequency so long as w32 (u/c) ≪ linewidth, where w32 is the level spacing and u is the thermal speed.

Note that the structure of N2O is NNO.

N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).

This follows from the hermiticity of the dipole operator.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Copropagating-wave twin-laser spectrometer. Note that the laser-line determination is accomplished by directing the output of laser #1 into a monochromator through a movable mirror (not shown).

Fig. 2
Fig. 2

N2O hyperfine spectra for P(3) and R(2) of the (100–001) band. Arrows indicate approximate positions of the enhanced resonances shown for the simplified level structure (right). For each indicated resonance, the higher-intensity wave at frequency ωs interacts with a weak transition (transition dipole matrix element ωw) when the lower-intensity wave at frequency ωw, interacts with a strong transition (μs). Dots indicate experimental data. Solid line shows theoretical fit, allowing coupling for both inner and outer nitrogen nuclei. Error bars are chosen to give χ2 = 1, to be compared with fluctuations in experimental data.

Tables (1)

Tables Icon

Table 1 Electric Quadrupole Coupling versus Vibrational State

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H 1 = - e q Q 2 I ( 2 I - 1 ) ( 2 J - 1 ) ( 2 J + 3 ) f ( I , J ) ,
f ( I , J ) = 3 ( I · J ) 2 + 3 2 ( I · J ) - I 2 J 2 .
W ( J - 1 ) = - e q Q 4 J + 1 2 J - 1 ,
W ( J ) = + e q Q 4 ,
W ( J + 1 ) = - e q Q 4 J 2 J + 3 .

Metrics