Abstract

A new type of wavelength-modulation laser spectroscopy is accomplished by utilizing an external phase modulator driven at radio frequencies large compared to the width of the spectral feature of interest. The spectral feature is probed by a single frequency-modulated (FM) sideband, and the associated absorption and dispersion are measured by monitoring the resulting radio-frequency beat signal. Experimental results are presented for the measurement of Fabry–Perot resonances, I2 vapor absorption lines, and saturation holes in Na vapor.

© 1980 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-modulation Fourier transform spectroscopy: a broadband method for measuring weak absorptions and dispersions

Julien Mandon, Guy Guelachvili, and Nathalie Picqué
Opt. Lett. 32(15) 2206-2208 (2007)

Pulsed frequency-modulation spectroscopy as a means for fast absorption measurements

Wilfried Lenth, Carmen Ortiz, and Gary C. Bjorklund
Opt. Lett. 6(7) 351-353 (1981)

Quantum-limited laser frequency-modulation spectroscopy

Manfred Gehrtz, Gary C. Bjorklund, and Edward A. Whittaker
J. Opt. Soc. Am. B 2(9) 1510-1526 (1985)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Tang and J. M. Telle, J. Appl. Phys. 45, 4503 (1974); E. I. Moses and C. L. Tang, Opt. Lett. 1, 115 (1977).
    [Crossref] [PubMed]
  2. S. A. Akhmanov, Y. D. Golyaev, and S. V. Lantratov, Sov. J. Quantum Electron. 8, 758 (1978).
    [Crossref]
  3. S. E. Harris, M. K. Oshman, B. J. McMurtry, and E. O. Ammann, Appl. Phys. Lett. 7, 185 (1965).
    [Crossref]
  4. M. A. Duguay and J. W. Hansen, Appl. Phys. Lett. 14, 14 (1969); D. Grischkowsky, Appl. Phys. Lett. 25, 566 (1974).
    [Crossref]
  5. J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, Appl. Phys. Lett. 26, 564 (1975).
    [Crossref]
  6. R. G. Brewer, Phys. Today 30(5), 50 (1977).
    [Crossref]
  7. G. L. Eesley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 192 (1978).
  8. A. Owyoung, IEEE J. Quantum Electron. QE-14, 192 (1978).
    [Crossref]
  9. M. Cardona, Modulation Spectroscopy, Supplement II of Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic, New York, 1969).
  10. M. D. Levenson and G. L. Eesley, Appl. Phys. 19, 1 (1979).
    [Crossref]
  11. G. M. Carter, Appl. Phys. Lett. 32, 810 (1978); G. Magerl and E. Bonek, Appl. Phys. Lett. 34, 452 (1979).
    [Crossref]

1979 (1)

M. D. Levenson and G. L. Eesley, Appl. Phys. 19, 1 (1979).
[Crossref]

1978 (4)

G. M. Carter, Appl. Phys. Lett. 32, 810 (1978); G. Magerl and E. Bonek, Appl. Phys. Lett. 34, 452 (1979).
[Crossref]

S. A. Akhmanov, Y. D. Golyaev, and S. V. Lantratov, Sov. J. Quantum Electron. 8, 758 (1978).
[Crossref]

G. L. Eesley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 192 (1978).

A. Owyoung, IEEE J. Quantum Electron. QE-14, 192 (1978).
[Crossref]

1977 (1)

R. G. Brewer, Phys. Today 30(5), 50 (1977).
[Crossref]

1975 (1)

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, Appl. Phys. Lett. 26, 564 (1975).
[Crossref]

1974 (1)

C. L. Tang and J. M. Telle, J. Appl. Phys. 45, 4503 (1974); E. I. Moses and C. L. Tang, Opt. Lett. 1, 115 (1977).
[Crossref] [PubMed]

1969 (1)

M. A. Duguay and J. W. Hansen, Appl. Phys. Lett. 14, 14 (1969); D. Grischkowsky, Appl. Phys. Lett. 25, 566 (1974).
[Crossref]

1965 (1)

S. E. Harris, M. K. Oshman, B. J. McMurtry, and E. O. Ammann, Appl. Phys. Lett. 7, 185 (1965).
[Crossref]

Akhmanov, S. A.

S. A. Akhmanov, Y. D. Golyaev, and S. V. Lantratov, Sov. J. Quantum Electron. 8, 758 (1978).
[Crossref]

Ammann, E. O.

S. E. Harris, M. K. Oshman, B. J. McMurtry, and E. O. Ammann, Appl. Phys. Lett. 7, 185 (1965).
[Crossref]

Bjorkholm, J. E.

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, Appl. Phys. Lett. 26, 564 (1975).
[Crossref]

Brewer, R. G.

R. G. Brewer, Phys. Today 30(5), 50 (1977).
[Crossref]

Cardona, M.

M. Cardona, Modulation Spectroscopy, Supplement II of Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic, New York, 1969).

Carter, G. M.

G. M. Carter, Appl. Phys. Lett. 32, 810 (1978); G. Magerl and E. Bonek, Appl. Phys. Lett. 34, 452 (1979).
[Crossref]

Duguay, M. A.

M. A. Duguay and J. W. Hansen, Appl. Phys. Lett. 14, 14 (1969); D. Grischkowsky, Appl. Phys. Lett. 25, 566 (1974).
[Crossref]

Eesley, G. L.

M. D. Levenson and G. L. Eesley, Appl. Phys. 19, 1 (1979).
[Crossref]

G. L. Eesley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 192 (1978).

Golyaev, Y. D.

S. A. Akhmanov, Y. D. Golyaev, and S. V. Lantratov, Sov. J. Quantum Electron. 8, 758 (1978).
[Crossref]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, Appl. Phys. Lett. 14, 14 (1969); D. Grischkowsky, Appl. Phys. Lett. 25, 566 (1974).
[Crossref]

Harris, S. E.

S. E. Harris, M. K. Oshman, B. J. McMurtry, and E. O. Ammann, Appl. Phys. Lett. 7, 185 (1965).
[Crossref]

Lantratov, S. V.

S. A. Akhmanov, Y. D. Golyaev, and S. V. Lantratov, Sov. J. Quantum Electron. 8, 758 (1978).
[Crossref]

Levenson, M. D.

M. D. Levenson and G. L. Eesley, Appl. Phys. 19, 1 (1979).
[Crossref]

G. L. Eesley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 192 (1978).

McMurtry, B. J.

S. E. Harris, M. K. Oshman, B. J. McMurtry, and E. O. Ammann, Appl. Phys. Lett. 7, 185 (1965).
[Crossref]

Oshman, M. K.

S. E. Harris, M. K. Oshman, B. J. McMurtry, and E. O. Ammann, Appl. Phys. Lett. 7, 185 (1965).
[Crossref]

Owyoung, A.

A. Owyoung, IEEE J. Quantum Electron. QE-14, 192 (1978).
[Crossref]

Pearson, D. B.

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, Appl. Phys. Lett. 26, 564 (1975).
[Crossref]

Tang, C. L.

C. L. Tang and J. M. Telle, J. Appl. Phys. 45, 4503 (1974); E. I. Moses and C. L. Tang, Opt. Lett. 1, 115 (1977).
[Crossref] [PubMed]

Telle, J. M.

C. L. Tang and J. M. Telle, J. Appl. Phys. 45, 4503 (1974); E. I. Moses and C. L. Tang, Opt. Lett. 1, 115 (1977).
[Crossref] [PubMed]

Tolles, W. M.

G. L. Eesley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 192 (1978).

Turner, E. H.

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, Appl. Phys. Lett. 26, 564 (1975).
[Crossref]

Appl. Phys. (1)

M. D. Levenson and G. L. Eesley, Appl. Phys. 19, 1 (1979).
[Crossref]

Appl. Phys. Lett. (4)

G. M. Carter, Appl. Phys. Lett. 32, 810 (1978); G. Magerl and E. Bonek, Appl. Phys. Lett. 34, 452 (1979).
[Crossref]

S. E. Harris, M. K. Oshman, B. J. McMurtry, and E. O. Ammann, Appl. Phys. Lett. 7, 185 (1965).
[Crossref]

M. A. Duguay and J. W. Hansen, Appl. Phys. Lett. 14, 14 (1969); D. Grischkowsky, Appl. Phys. Lett. 25, 566 (1974).
[Crossref]

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, Appl. Phys. Lett. 26, 564 (1975).
[Crossref]

IEEE J. Quantum Electron. (2)

G. L. Eesley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 192 (1978).

A. Owyoung, IEEE J. Quantum Electron. QE-14, 192 (1978).
[Crossref]

J. Appl. Phys. (1)

C. L. Tang and J. M. Telle, J. Appl. Phys. 45, 4503 (1974); E. I. Moses and C. L. Tang, Opt. Lett. 1, 115 (1977).
[Crossref] [PubMed]

Phys. Today (1)

R. G. Brewer, Phys. Today 30(5), 50 (1977).
[Crossref]

Sov. J. Quantum Electron. (1)

S. A. Akhmanov, Y. D. Golyaev, and S. V. Lantratov, Sov. J. Quantum Electron. 8, 758 (1978).
[Crossref]

Other (1)

M. Cardona, Modulation Spectroscopy, Supplement II of Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic, New York, 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Typical experimental arrangement for FM spectroscopy.

Fig. 2
Fig. 2

Frequency-domain illustration of FM spectroscopy.

Fig. 3
Fig. 3

Experimental and theoretical line shapes for FM spectroscopy of a Fabry–Perot resonance: (a) experimental in-phase signal, (b) theoretical in-phase signal, (c) experimental quadrature signal, (d) theoretical quadrature signal.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 2 ( t ) = E 0 2 n = - J n ( M ) exp [ i ( ω c + n ω m ) t ] + c . c . ,
E ˜ 3 ( t ) = E 0 [ T 0 e i ω c t + T 1 M 2 e i ( ω c + ω m ) t - T - 1 M 2 e i ( ω c - ω m ) t ] .
I 3 ( t ) = c E 0 2 8 π e - 2 δ 0 { 1 + [ e δ 0 - δ 1 cos ( ϕ 1 - ϕ 0 ) - e δ 0 - δ - 1 cos ( ϕ 0 - ϕ - 1 ) ] M cos ω m t + [ e δ 0 - δ 1 sin ( ϕ 1 - ϕ 0 ) - e δ 0 - δ - 1 sin ( ϕ 0 - ϕ - 1 ) ] M sin ω m t } .
I 3 ( t ) = c E 0 2 8 π e - 2 δ 0 [ 1 + ( δ - 1 - δ 1 ) M cos ω m t + ( ϕ 1 + ϕ - 1 - 2 ϕ 0 ) M sin ω m t ] ,
I 3 ( t ) = c E 0 2 8 π e - 2 δ ¯ [ 1 - Δ δ M cos ω m t + Δ ϕ M sin ω m t ] .

Metrics