Abstract

Vibrational-relaxation and rotational-thermalization time constants of the D2O (010) state are studied in detail. A rotational level with an exceptionally long rotational-relaxation time constant is identified.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., A. Gondhaleker, E. Holzhauer, N. R. Heckenberg, Phys. Lett. 46A, 229 (1973).
  2. E. Yablonovitch, IEEE J. Quantum Electron. QE-11, 789 (1975).
    [CrossRef]
  3. F. Keilmann, R. L. Sheffield, J. R. R. Leite, M. S. Feld, A. Javan, Appl. Phys. Lett. 26, 19 (1975).
    [CrossRef]
  4. R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelly, A. Javan, Appl. Phys. Lett. 21, 303 (1972).
    [CrossRef]
  5. J. Finzi, F. E. Hovis, V. N. Paniflav, P. Hess, C. B. Moore, J. Chem. Phys. 67, 4053 (1977).
    [CrossRef]
  6. H. K. Shin, J. Chem. Phys. (to be published).
  7. The H2O deactivation studies were done within a few minutes after H2O was introduced into the absorption cell containing the D2O molecules to prevent appreciable HDO formation. The observed decays remained unchanged (within the quoted experimental error) during the measurements at a given gas fill.

1977 (1)

J. Finzi, F. E. Hovis, V. N. Paniflav, P. Hess, C. B. Moore, J. Chem. Phys. 67, 4053 (1977).
[CrossRef]

1975 (2)

E. Yablonovitch, IEEE J. Quantum Electron. QE-11, 789 (1975).
[CrossRef]

F. Keilmann, R. L. Sheffield, J. R. R. Leite, M. S. Feld, A. Javan, Appl. Phys. Lett. 26, 19 (1975).
[CrossRef]

1973 (1)

See, e.g., A. Gondhaleker, E. Holzhauer, N. R. Heckenberg, Phys. Lett. 46A, 229 (1973).

1972 (1)

R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelly, A. Javan, Appl. Phys. Lett. 21, 303 (1972).
[CrossRef]

Calawa, A. R.

R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelly, A. Javan, Appl. Phys. Lett. 21, 303 (1972).
[CrossRef]

Eng, R. S.

R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelly, A. Javan, Appl. Phys. Lett. 21, 303 (1972).
[CrossRef]

Feld, M. S.

F. Keilmann, R. L. Sheffield, J. R. R. Leite, M. S. Feld, A. Javan, Appl. Phys. Lett. 26, 19 (1975).
[CrossRef]

Finzi, J.

J. Finzi, F. E. Hovis, V. N. Paniflav, P. Hess, C. B. Moore, J. Chem. Phys. 67, 4053 (1977).
[CrossRef]

Gondhaleker, A.

See, e.g., A. Gondhaleker, E. Holzhauer, N. R. Heckenberg, Phys. Lett. 46A, 229 (1973).

Harman, T. C.

R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelly, A. Javan, Appl. Phys. Lett. 21, 303 (1972).
[CrossRef]

Heckenberg, N. R.

See, e.g., A. Gondhaleker, E. Holzhauer, N. R. Heckenberg, Phys. Lett. 46A, 229 (1973).

Hess, P.

J. Finzi, F. E. Hovis, V. N. Paniflav, P. Hess, C. B. Moore, J. Chem. Phys. 67, 4053 (1977).
[CrossRef]

Holzhauer, E.

See, e.g., A. Gondhaleker, E. Holzhauer, N. R. Heckenberg, Phys. Lett. 46A, 229 (1973).

Hovis, F. E.

J. Finzi, F. E. Hovis, V. N. Paniflav, P. Hess, C. B. Moore, J. Chem. Phys. 67, 4053 (1977).
[CrossRef]

Javan, A.

F. Keilmann, R. L. Sheffield, J. R. R. Leite, M. S. Feld, A. Javan, Appl. Phys. Lett. 26, 19 (1975).
[CrossRef]

R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelly, A. Javan, Appl. Phys. Lett. 21, 303 (1972).
[CrossRef]

Keilmann, F.

F. Keilmann, R. L. Sheffield, J. R. R. Leite, M. S. Feld, A. Javan, Appl. Phys. Lett. 26, 19 (1975).
[CrossRef]

Kelly, P. L.

R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelly, A. Javan, Appl. Phys. Lett. 21, 303 (1972).
[CrossRef]

Leite, J. R. R.

F. Keilmann, R. L. Sheffield, J. R. R. Leite, M. S. Feld, A. Javan, Appl. Phys. Lett. 26, 19 (1975).
[CrossRef]

Moore, C. B.

J. Finzi, F. E. Hovis, V. N. Paniflav, P. Hess, C. B. Moore, J. Chem. Phys. 67, 4053 (1977).
[CrossRef]

Paniflav, V. N.

J. Finzi, F. E. Hovis, V. N. Paniflav, P. Hess, C. B. Moore, J. Chem. Phys. 67, 4053 (1977).
[CrossRef]

Sheffield, R. L.

F. Keilmann, R. L. Sheffield, J. R. R. Leite, M. S. Feld, A. Javan, Appl. Phys. Lett. 26, 19 (1975).
[CrossRef]

Shin, H. K.

H. K. Shin, J. Chem. Phys. (to be published).

Yablonovitch, E.

E. Yablonovitch, IEEE J. Quantum Electron. QE-11, 789 (1975).
[CrossRef]

Appl. Phys. Lett. (2)

F. Keilmann, R. L. Sheffield, J. R. R. Leite, M. S. Feld, A. Javan, Appl. Phys. Lett. 26, 19 (1975).
[CrossRef]

R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelly, A. Javan, Appl. Phys. Lett. 21, 303 (1972).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Yablonovitch, IEEE J. Quantum Electron. QE-11, 789 (1975).
[CrossRef]

J. Chem. Phys. (1)

J. Finzi, F. E. Hovis, V. N. Paniflav, P. Hess, C. B. Moore, J. Chem. Phys. 67, 4053 (1977).
[CrossRef]

Phys. Lett. (1)

See, e.g., A. Gondhaleker, E. Holzhauer, N. R. Heckenberg, Phys. Lett. 46A, 229 (1973).

Other (2)

H. K. Shin, J. Chem. Phys. (to be published).

The H2O deactivation studies were done within a few minutes after H2O was introduced into the absorption cell containing the D2O molecules to prevent appreciable HDO formation. The observed decays remained unchanged (within the quoted experimental error) during the measurements at a given gas fill.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (2)

Tables Icon

Table 1 Vibration-Time Deactivation Caused by Buffer Gas

Tables Icon

Table 2 Buffer-Gas Rotational-Rotational Time Constant for the D2O Transition Probed with the 9-μm R(36) CO2 Line

Metrics