Abstract

Dielectric Mie scatterers possessing simultaneously magnetic and electric resonances can be used to tailor scattering utilizing the interference among electromagnetic multipole moments. Cloaking for this type of Mie scatterer is important for various applications. However, the existing cloaking mechanisms mainly focus on the elimination of net electric dipole moments, which have not been generalized to a Mie scatterer with both magnetic and electric responses yet. Herein, we propose and experimentally demonstrate an invisible Mie scatterer utilizing a hybrid skin cloak. The hybrid mechanism relies on the realization of a magnetic analog of a plasmonic cloak and the electric anapole condition to eliminate the net magnetic and electric dipole moments simultaneously. Microwave experiments are provided to validate the proposal. Our results not only introduce a new concept of skin cloaking for electromagnetic scatterers, but also provide new insight for the invisibility and illusion of Mie scatterers.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Doubly mirror-induced electric and magnetic anapole modes in metal-dielectric-metal nanoresonators

Jin Yao, Bin Li, Guoxiong Cai, and Qing Huo Liu
Opt. Lett. 46(3) 576-579 (2021)

Directional invisibility by genetic optimization

Emre Bor, Ceren Babayigit, Hamza Kurt, Kestutis Staliunas, and Mirbek Turduev
Opt. Lett. 43(23) 5781-5784 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this Letter are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription