Abstract

Phase-retrieval (PR) receivers can reconstruct complex-valued signals from two de-correlated intensity measurements, without the assistance of any optical carriers. However, both the calculation complexity with hundreds of iterations and the limited PR accuracy prevent it from being applied to high-speed photonic interconnections. Here we propose and demonstrate a PR receiver based on adaptive intensity transformation, with the capability of both fast convergence and high accuracy. Then we numerically reconstruct 56 GBaud QPSK signals after the 80 km standard single-mode fiber transmission by using our proposed PR receiver with only 50 iterations. In comparison with the recently reported PR receiver with the phase reset, our proposed PR receiver can reduce the required optical signal-to-noise ratio by 1.95 and 1.89 dB, in terms of 20% soft-decision and 7% hard-decision forward-error correction, respectively.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Phase retrieval with fast convergence employing parallel alternative projections and phase reset for coherent communications

Haoshuo Chen, Hanzi Huang, Nicolas K. Fontaine, and Roland Ryf
Opt. Lett. 45(5) 1188-1191 (2020)

Carrier-less phase retrieval receiver leveraging digital upsampling

Hanzi Huang, Haoshuo Chen, Yetian Huang, Nicolas K. Fontaine, Roland Ryf, and Yingxiong Song
Opt. Lett. 45(21) 6070-6073 (2020)

Analog-digital hybrid chaos-based long-haul coherent optical secure communication

Yudi Fu, Mengfan Cheng, Weidong Shao, Hanwen Luo, Di Li, Lei Deng, Qi Yang, and Deming Liu
Opt. Lett. 46(7) 1506-1509 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription