Abstract

Ultrasound-modulated optical tomography (UOT) images optical contrast deep inside biological tissue. Among existing approaches, camera-based parallel detection is beneficial in modulation depth but is limited to the relatively slow framerate of cameras. This condition prevents such a scheme from achieving maturity to image live animals with sub-millisecond speckle correlation time. In this work, we developed on-axis single-shot UOT by investigating the statistics of speckles, breaking the restriction imposed by the slow camera framerate. As a proof of concept, we experimentally imaged a one-dimensional absorptive object buried inside a moving scattering medium with speckle correlation time down to 0.48 ms. We envision that this single-shot UOT is promising to cope with live animals with fast speckle decorrelation.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Imaging through highly scattering human skulls with ultrasound-modulated optical tomography

Yan Liu, Ruizhi Cao, Jian Xu, Haowen Ruan, and Changhuei Yang
Opt. Lett. 45(11) 2973-2976 (2020)

Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles

Jun Li, Geng Ku, and Lihong V. Wang
Appl. Opt. 41(28) 6030-6035 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics