Abstract

This Letter reports the design, fabrication, and evaluation of reflection-type planar vapor cells for chip-scale atomic clocks. The cell with 2–8 mm cavity length contains two 45° Bragg reflector mirrors assembled using a local anodic bonding. Coherent population trapping resonance of Rb atoms is observed, realizing an atomic clock operation. Allan deviations at an averaging time of 1 s are ${2.2} \times {{1}}{{{0}}^{- 10}}$ and ${9.5} \times {{1}}{{{0}}^{- 11}}$ for 2 mm long and 6 mm long vapor cells, respectively. These results show that planar vapor cells compatible with a system-in-package are feasible without degradation of clock stabilities compared to conventional vertically stacked cells.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability

S. Knappe, V. Gerginov, P. D.D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching
Opt. Lett. 30(18) 2351-2353 (2005)

Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection

Bozhong Tan, Yuan Tian, Huifang Lin, Jiehua Chen, and Sihong Gu
Opt. Lett. 40(16) 3703-3706 (2015)

Low helium permeation cells for atomic microsystems technology

Argyrios T. Dellis, Vishal Shah, Elizabeth A. Donley, Svenja Knappe, and John Kitching
Opt. Lett. 41(12) 2775-2778 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription