Abstract

Valley photonic crystals (VPhCs) are an attractive platform for the implementation of topologically protected optical waveguides in photonic integrated circuits (PICs). The realization of slow light modes in the topological waveguides may lead to further miniaturization and functionalization of the PICs. In this Letter, we report an approach to realize topological slow light waveguides in semiconductor-slab-based VPhCs. We show that a bearded interface of two topologically distinct VPhCs can support topological kink modes with large group indices over 100 within the topological bandgap. We numerically demonstrate robust light propagation in the topological slow light waveguide with large group indices of ${\sim} 60$, even under the presence of sharp bends. Our work opens a novel route to implement topological slow light waveguides in a way compatible with current PIC technology.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription