Abstract

We demonstrate terahertz (THz) generation using the tilted pulse front method in lithium niobate, driven at an unprecedented high average power of more than 100 W and at a 13.3 MHz repetition rate, provided by a compact amplifier-free mode-locked thin-disk oscillator. The conversion efficiency was optimized with respect to the pump spot size and pump pulse duration, enabling us to generate a maximum THz average power of 66 mW, which is, to the best of our knowledge, the highest reported to date from a laser-driven, few-cycle THz source. Furthermore, we identify beam walk-off as the main obstacle that currently limits the conversion efficiency in this excitation regime (with moderate pulse energies and small spot sizes). Further upscaling to the watt level and beyond is within reach, paving the way for linear and nonlinear high average power THz spectroscopy experiments with an exceptional signal-to-noise ratio at megahertz repetition rates.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription