Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

280-km experimental demonstration of a quantum digital signature with one decoy state

Not Accessible

Your library or personal account may give you access

Abstract

A quantum digital signature (QDS) guarantees the unforgeability, nonrepudiation, and transferability of signature messages with information-theoretic security, and hence has attracted much attention recently. However, most previous implementations of QDS showed relatively low signature rates and/or short transmission distance. In this Letter, we report a proof-of-principle phase-encoding QDS demonstration using only one decoy state. First, such a method avoids the modulation of the vacuum state, thus reducing experimental complexity and random number consumption. Moreover, incorporated with low-loss asymmetric Mach–Zehnder interferometers and a real-time polarization calibration technique, we have successfully achieved a higher signature rate, e.g., 0.98 bit/s at 103 km, and to date, a record-breaking, to the best of our knowledge, transmission distance of over 280-km installed fibers. Our work represents a significant step towards real-world applications of QDS.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system

Robert J. Collins, Ryan Amiri, Mikio Fujiwara, Toshimori Honjo, Kaoru Shimizu, Kiyoshi Tamaki, Masahiro Takeoka, Erika Andersson, Gerald S. Buller, and Masahide Sasaki
Opt. Lett. 41(21) 4883-4886 (2016)

Twin-field quantum digital signatures

Chun-Hui Zhang, Xingyu Zhou, Chun-Mei Zhang, Jian Li, and Qin Wang
Opt. Lett. 46(15) 3757-3760 (2021)

Practical quantum digital signature with a gigahertz BB84 quantum key distribution system

Xue-Bi An, Hao Zhang, Chun-Mei Zhang, Wei Chen, Shuang Wang, Zhen-Qiang Yin, Qin Wang, De-Yong He, Peng-Lei Hao, Shu-Feng Liu, Xing-Yu Zhou, Guang-Can Guo, and Zheng-Fu Han
Opt. Lett. 44(1) 139-142 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.