Abstract

Artificial neural networks have shown effectiveness in the inverse design of nanophotonic structures; however, the numerical accuracy and algorithm efficiency are not analyzed adequately in previous reports. In this Letter, we demonstrate the convolutional neural network as an inverse design tool to achieve high numerical accuracy in plasmonic metasurfaces. A comparison of the convolutional neural networks and the fully connected neural networks show that convolutional neural networks have higher generalization capabilities. We share practical guidelines for optimizing the neural network and analyzed the hierarchy of accuracy in the multi-parameter inverse design of plasmonic metasurfaces. A high inverse design accuracy of $\pm 8\;{\rm nm}$ for the critical geometrical parameters is demonstrated.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks

Mehran Soltani, Francesco Da Ros, Andrea Carena, and Darko Zibar
Opt. Lett. 46(11) 2650-2653 (2021)

Neural networks enabled forward and inverse design of reconfigurable metasurfaces

Ibrahim Tanriover, Wisnu Hadibrata, Jacob Scheuer, and Koray Aydin
Opt. Express 29(17) 27219-27227 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription