Abstract

An optically-enabled radio frquency (RF) self-interference cancellation system is demonstrated for over-the-air in-band full duplex transmission, based on a signal-of-interest (SOI) driven regular triangle algorithm. Since the goal of a self-interference cancellation system is to retrieve the SOI that is masked by the in-band interference signal, using the SOI quality as the driven parameter for optimizing the self-interference cancellation performance is a natural and effective way to allow the system to adapt to changes and obtain the best cancellation performance. Since regular triangle algorithm has short iteration time, bursts of pseudo-random binary sequence would be used between real data transmission for optimizing the self-interference cancellation performance. The adaptive regular triangle algorithm optimizes the cancellation setting such that the in-band interference can be cancelled to a minimum, i.e., down to the noise floor. During the over-the-air experiment, 22 dB of cancellation depth is obtained over a 300 MHz bandwidth at 18.35 GHz without the need of digital self-interference cancellation.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive optical self-interference cancellation for in-band full-duplex systems using regular triangle algorithm

Lizhuo Zheng, Yunhao Zhang, Shilin Xiao, Lin Huang, Jiafei Fang, and Weisheng Hu
Opt. Express 27(4) 4116-4125 (2019)

Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system

Yunhao Zhang, Shilin Xiao, Hanlin Feng, Lu Zhang, Zhao Zhou, and Weisheng Hu
Opt. Express 23(26) 33205-33213 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, IEEE Commun. Mag. 53(5), 128 (2015).
    [Crossref]
  2. D. Kim, H. Lee, and D. Hong, IEEE Commun. Surveys Tuts. 17, 2017 (2015).
    [Crossref]
  3. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, IEEE J. Sel. Areas Commun. 32, 1637 (2014).
    [Crossref]
  4. G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, IEEE Commun. Surveys Tuts. 17, 500 (2015).
    [Crossref]
  5. P. A. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, J. Lightwave Technol. 27, 2052 (2009).
    [Crossref]
  6. S. Hong, J. Brand, J. I. Choi, J. Mehlman, S. Katti, and P. Levis, IEEE Commun. Mag. 52(2), 114 (2014).
    [Crossref]
  7. J. Saurez, K. Kravtsov, and P. R. Prucnal, IEEE J. Quantum Electron. 45, 402 (2009).
    [Crossref]
  8. Y. Zhang, S. Xiao, H. Feng, L. Zhang, Z. Zhao, and W. Hu, Opt. Express 23, 33205 (2015).
    [Crossref]
  9. X. Han, B. Huo, Y. Shao, and M. Zhao, IEEE Photon. J. 9, 1 (2017).
    [Crossref]
  10. M. P. Chang, M. P. Fok, A. Hofmaler, and P. R. Prucnal, IEEE Microw. Wireless. Compon. Lett. 23, 99 (2013).
    [Crossref]
  11. Y. Xiang, G. Li, and S. Pan, Opt. Express 25, 21259 (2017).
    [Crossref]
  12. Q. Zhou, H. Feng, G. Scott, and M. P. Fok, Opt. Lett. 39, 6537 (2014).
    [Crossref]
  13. Y. Zhang, S. Xiao, Y. Yu, C. Chen, M. Bi, L. Zhang, and W. Hu, Opt. Express 24, 30139 (2016).
    [Crossref]
  14. Y. Zhang, L. Li, M. Bi, and S. Xiao, Opt. Commun. 405, 152 (2017).
    [Crossref]
  15. Y. Zhang, L. Li, S. Xiao, M. Bi, Y. Yu, and W. Hu, IEEE Photon. J. 9, 1 (2017).
    [Crossref]
  16. Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
    [Crossref]
  17. Y. Yu, Y. Zhang, L. Huang, and S. Xiao, Appl. Opt. 57, 1284 (2018).
    [Crossref]
  18. J. J. Sun, M. P. Chang, and P. R. Prucnal, IEEE Photon. Technol. Lett. 29, 397 (2017).
    [Crossref]
  19. L. Zheng, Y. Zhang, S. Xiao, L. Huang, and W. Hu, Opt. Express 27, 4116 (2019).
    [Crossref]
  20. L. Huang, Y. Zhang, S. Xiao, L. Zheng, and W. Hu, Opt. Commun. 437, 259 (2019).
    [Crossref]
  21. M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, IEEE Trans. Microw. Theory Tech. 65, 4493 (2017).
    [Crossref]
  22. H. Chalmers, “Digital frequency conversion and tuning scheme for microwave radio receivers and transmitters,” U.S. patent5,375,146 (20December1994).

2019 (2)

L. Zheng, Y. Zhang, S. Xiao, L. Huang, and W. Hu, Opt. Express 27, 4116 (2019).
[Crossref]

L. Huang, Y. Zhang, S. Xiao, L. Zheng, and W. Hu, Opt. Commun. 437, 259 (2019).
[Crossref]

2018 (2)

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
[Crossref]

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, Appl. Opt. 57, 1284 (2018).
[Crossref]

2017 (6)

J. J. Sun, M. P. Chang, and P. R. Prucnal, IEEE Photon. Technol. Lett. 29, 397 (2017).
[Crossref]

Y. Zhang, L. Li, M. Bi, and S. Xiao, Opt. Commun. 405, 152 (2017).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, Y. Yu, and W. Hu, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Y. Xiang, G. Li, and S. Pan, Opt. Express 25, 21259 (2017).
[Crossref]

X. Han, B. Huo, Y. Shao, and M. Zhao, IEEE Photon. J. 9, 1 (2017).
[Crossref]

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, IEEE Trans. Microw. Theory Tech. 65, 4493 (2017).
[Crossref]

2016 (1)

2015 (4)

Y. Zhang, S. Xiao, H. Feng, L. Zhang, Z. Zhao, and W. Hu, Opt. Express 23, 33205 (2015).
[Crossref]

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, IEEE Commun. Mag. 53(5), 128 (2015).
[Crossref]

D. Kim, H. Lee, and D. Hong, IEEE Commun. Surveys Tuts. 17, 2017 (2015).
[Crossref]

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, IEEE Commun. Surveys Tuts. 17, 500 (2015).
[Crossref]

2014 (3)

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, IEEE J. Sel. Areas Commun. 32, 1637 (2014).
[Crossref]

S. Hong, J. Brand, J. I. Choi, J. Mehlman, S. Katti, and P. Levis, IEEE Commun. Mag. 52(2), 114 (2014).
[Crossref]

Q. Zhou, H. Feng, G. Scott, and M. P. Fok, Opt. Lett. 39, 6537 (2014).
[Crossref]

2013 (1)

M. P. Chang, M. P. Fok, A. Hofmaler, and P. R. Prucnal, IEEE Microw. Wireless. Compon. Lett. 23, 99 (2013).
[Crossref]

2009 (2)

J. Saurez, K. Kravtsov, and P. R. Prucnal, IEEE J. Quantum Electron. 45, 402 (2009).
[Crossref]

P. A. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, J. Lightwave Technol. 27, 2052 (2009).
[Crossref]

Bi, M.

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, Y. Yu, and W. Hu, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Y. Zhang, L. Li, M. Bi, and S. Xiao, Opt. Commun. 405, 152 (2017).
[Crossref]

Y. Zhang, S. Xiao, Y. Yu, C. Chen, M. Bi, L. Zhang, and W. Hu, Opt. Express 24, 30139 (2016).
[Crossref]

Bliss, D. W.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, IEEE J. Sel. Areas Commun. 32, 1637 (2014).
[Crossref]

Blow, E. C.

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, IEEE Trans. Microw. Theory Tech. 65, 4493 (2017).
[Crossref]

Brand, J.

S. Hong, J. Brand, J. I. Choi, J. Mehlman, S. Katti, and P. Levis, IEEE Commun. Mag. 52(2), 114 (2014).
[Crossref]

Chai, X.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, IEEE Commun. Mag. 53(5), 128 (2015).
[Crossref]

Chalmers, H.

H. Chalmers, “Digital frequency conversion and tuning scheme for microwave radio receivers and transmitters,” U.S. patent5,375,146 (20December1994).

Chang, M. P.

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, IEEE Trans. Microw. Theory Tech. 65, 4493 (2017).
[Crossref]

J. J. Sun, M. P. Chang, and P. R. Prucnal, IEEE Photon. Technol. Lett. 29, 397 (2017).
[Crossref]

M. P. Chang, M. P. Fok, A. Hofmaler, and P. R. Prucnal, IEEE Microw. Wireless. Compon. Lett. 23, 99 (2013).
[Crossref]

Chen, C.

Choi, J. I.

S. Hong, J. Brand, J. I. Choi, J. Mehlman, S. Katti, and P. Levis, IEEE Commun. Mag. 52(2), 114 (2014).
[Crossref]

Feng, H.

Fok, M. P.

Q. Zhou, H. Feng, G. Scott, and M. P. Fok, Opt. Lett. 39, 6537 (2014).
[Crossref]

M. P. Chang, M. P. Fok, A. Hofmaler, and P. R. Prucnal, IEEE Microw. Wireless. Compon. Lett. 23, 99 (2013).
[Crossref]

Gamage, P. A.

Guo, D.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, IEEE J. Sel. Areas Commun. 32, 1637 (2014).
[Crossref]

Han, X.

X. Han, B. Huo, Y. Shao, and M. Zhao, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Hanzo, L.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, IEEE Commun. Mag. 53(5), 128 (2015).
[Crossref]

Hofmaler, A.

M. P. Chang, M. P. Fok, A. Hofmaler, and P. R. Prucnal, IEEE Microw. Wireless. Compon. Lett. 23, 99 (2013).
[Crossref]

Hong, D.

D. Kim, H. Lee, and D. Hong, IEEE Commun. Surveys Tuts. 17, 2017 (2015).
[Crossref]

Hong, S.

S. Hong, J. Brand, J. I. Choi, J. Mehlman, S. Katti, and P. Levis, IEEE Commun. Mag. 52(2), 114 (2014).
[Crossref]

Hu, W.

L. Huang, Y. Zhang, S. Xiao, L. Zheng, and W. Hu, Opt. Commun. 437, 259 (2019).
[Crossref]

L. Zheng, Y. Zhang, S. Xiao, L. Huang, and W. Hu, Opt. Express 27, 4116 (2019).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, Y. Yu, and W. Hu, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Y. Zhang, S. Xiao, Y. Yu, C. Chen, M. Bi, L. Zhang, and W. Hu, Opt. Express 24, 30139 (2016).
[Crossref]

Y. Zhang, S. Xiao, H. Feng, L. Zhang, Z. Zhao, and W. Hu, Opt. Express 23, 33205 (2015).
[Crossref]

Huang, L.

L. Zheng, Y. Zhang, S. Xiao, L. Huang, and W. Hu, Opt. Express 27, 4116 (2019).
[Crossref]

L. Huang, Y. Zhang, S. Xiao, L. Zheng, and W. Hu, Opt. Commun. 437, 259 (2019).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
[Crossref]

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, Appl. Opt. 57, 1284 (2018).
[Crossref]

Huo, B.

X. Han, B. Huo, Y. Shao, and M. Zhao, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Ji, H.

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, IEEE Commun. Surveys Tuts. 17, 500 (2015).
[Crossref]

Katti, S.

S. Hong, J. Brand, J. I. Choi, J. Mehlman, S. Katti, and P. Levis, IEEE Commun. Mag. 52(2), 114 (2014).
[Crossref]

Kim, D.

D. Kim, H. Lee, and D. Hong, IEEE Commun. Surveys Tuts. 17, 2017 (2015).
[Crossref]

Kravtsov, K.

J. Saurez, K. Kravtsov, and P. R. Prucnal, IEEE J. Quantum Electron. 45, 402 (2009).
[Crossref]

Lee, H.

D. Kim, H. Lee, and D. Hong, IEEE Commun. Surveys Tuts. 17, 2017 (2015).
[Crossref]

Leung, V. C. M.

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, IEEE Commun. Surveys Tuts. 17, 500 (2015).
[Crossref]

Levis, P.

S. Hong, J. Brand, J. I. Choi, J. Mehlman, S. Katti, and P. Levis, IEEE Commun. Mag. 52(2), 114 (2014).
[Crossref]

Li, G.

Li, L.

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, Y. Yu, and W. Hu, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Y. Zhang, L. Li, M. Bi, and S. Xiao, Opt. Commun. 405, 152 (2017).
[Crossref]

Li, X.

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, IEEE Commun. Surveys Tuts. 17, 500 (2015).
[Crossref]

Lim, C.

Liu, G.

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, IEEE Commun. Surveys Tuts. 17, 500 (2015).
[Crossref]

Long, K.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, IEEE Commun. Mag. 53(5), 128 (2015).
[Crossref]

Lu, M. Z.

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, IEEE Trans. Microw. Theory Tech. 65, 4493 (2017).
[Crossref]

Mehlman, J.

S. Hong, J. Brand, J. I. Choi, J. Mehlman, S. Katti, and P. Levis, IEEE Commun. Mag. 52(2), 114 (2014).
[Crossref]

Nirmalathas, A.

Novak, D.

Pan, S.

Prucnal, P. R.

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, IEEE Trans. Microw. Theory Tech. 65, 4493 (2017).
[Crossref]

J. J. Sun, M. P. Chang, and P. R. Prucnal, IEEE Photon. Technol. Lett. 29, 397 (2017).
[Crossref]

M. P. Chang, M. P. Fok, A. Hofmaler, and P. R. Prucnal, IEEE Microw. Wireless. Compon. Lett. 23, 99 (2013).
[Crossref]

J. Saurez, K. Kravtsov, and P. R. Prucnal, IEEE J. Quantum Electron. 45, 402 (2009).
[Crossref]

Rangarajan, S.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, IEEE J. Sel. Areas Commun. 32, 1637 (2014).
[Crossref]

Sabharwal, A.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, IEEE J. Sel. Areas Commun. 32, 1637 (2014).
[Crossref]

Saurez, J.

J. Saurez, K. Kravtsov, and P. R. Prucnal, IEEE J. Quantum Electron. 45, 402 (2009).
[Crossref]

Schniter, P.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, IEEE J. Sel. Areas Commun. 32, 1637 (2014).
[Crossref]

Scott, G.

Shao, Y.

X. Han, B. Huo, Y. Shao, and M. Zhao, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Sun, J. J.

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, IEEE Trans. Microw. Theory Tech. 65, 4493 (2017).
[Crossref]

J. J. Sun, M. P. Chang, and P. R. Prucnal, IEEE Photon. Technol. Lett. 29, 397 (2017).
[Crossref]

Vasilakos, A. V.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, IEEE Commun. Mag. 53(5), 128 (2015).
[Crossref]

Waterhouse, R.

Wichman, R.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, IEEE J. Sel. Areas Commun. 32, 1637 (2014).
[Crossref]

Xiang, Y.

Xiao, S.

L. Zheng, Y. Zhang, S. Xiao, L. Huang, and W. Hu, Opt. Express 27, 4116 (2019).
[Crossref]

L. Huang, Y. Zhang, S. Xiao, L. Zheng, and W. Hu, Opt. Commun. 437, 259 (2019).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
[Crossref]

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, Appl. Opt. 57, 1284 (2018).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, Y. Yu, and W. Hu, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Y. Zhang, L. Li, M. Bi, and S. Xiao, Opt. Commun. 405, 152 (2017).
[Crossref]

Y. Zhang, S. Xiao, Y. Yu, C. Chen, M. Bi, L. Zhang, and W. Hu, Opt. Express 24, 30139 (2016).
[Crossref]

Y. Zhang, S. Xiao, H. Feng, L. Zhang, Z. Zhao, and W. Hu, Opt. Express 23, 33205 (2015).
[Crossref]

Yu, F. R.

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, IEEE Commun. Surveys Tuts. 17, 500 (2015).
[Crossref]

Yu, Y.

Zhang, L.

Zhang, Y.

L. Zheng, Y. Zhang, S. Xiao, L. Huang, and W. Hu, Opt. Express 27, 4116 (2019).
[Crossref]

L. Huang, Y. Zhang, S. Xiao, L. Zheng, and W. Hu, Opt. Commun. 437, 259 (2019).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
[Crossref]

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, Appl. Opt. 57, 1284 (2018).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, Y. Yu, and W. Hu, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Y. Zhang, L. Li, M. Bi, and S. Xiao, Opt. Commun. 405, 152 (2017).
[Crossref]

Y. Zhang, S. Xiao, Y. Yu, C. Chen, M. Bi, L. Zhang, and W. Hu, Opt. Express 24, 30139 (2016).
[Crossref]

Y. Zhang, S. Xiao, H. Feng, L. Zhang, Z. Zhao, and W. Hu, Opt. Express 23, 33205 (2015).
[Crossref]

Zhang, Z.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, IEEE Commun. Mag. 53(5), 128 (2015).
[Crossref]

Zhao, M.

X. Han, B. Huo, Y. Shao, and M. Zhao, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Zhao, Z.

Zheng, L.

L. Zheng, Y. Zhang, S. Xiao, L. Huang, and W. Hu, Opt. Express 27, 4116 (2019).
[Crossref]

L. Huang, Y. Zhang, S. Xiao, L. Zheng, and W. Hu, Opt. Commun. 437, 259 (2019).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
[Crossref]

Zhou, Q.

Appl. Opt. (1)

IEEE Commun. Mag. (2)

S. Hong, J. Brand, J. I. Choi, J. Mehlman, S. Katti, and P. Levis, IEEE Commun. Mag. 52(2), 114 (2014).
[Crossref]

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, IEEE Commun. Mag. 53(5), 128 (2015).
[Crossref]

IEEE Commun. Surveys Tuts. (2)

D. Kim, H. Lee, and D. Hong, IEEE Commun. Surveys Tuts. 17, 2017 (2015).
[Crossref]

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, IEEE Commun. Surveys Tuts. 17, 500 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Saurez, K. Kravtsov, and P. R. Prucnal, IEEE J. Quantum Electron. 45, 402 (2009).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, IEEE J. Sel. Areas Commun. 32, 1637 (2014).
[Crossref]

IEEE Microw. Wireless. Compon. Lett. (1)

M. P. Chang, M. P. Fok, A. Hofmaler, and P. R. Prucnal, IEEE Microw. Wireless. Compon. Lett. 23, 99 (2013).
[Crossref]

IEEE Photon. J. (2)

X. Han, B. Huo, Y. Shao, and M. Zhao, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Y. Zhang, L. Li, S. Xiao, M. Bi, Y. Yu, and W. Hu, IEEE Photon. J. 9, 1 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, IEEE Photon. Technol. Lett. 30, 1103 (2018).
[Crossref]

J. J. Sun, M. P. Chang, and P. R. Prucnal, IEEE Photon. Technol. Lett. 29, 397 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, IEEE Trans. Microw. Theory Tech. 65, 4493 (2017).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (2)

L. Huang, Y. Zhang, S. Xiao, L. Zheng, and W. Hu, Opt. Commun. 437, 259 (2019).
[Crossref]

Y. Zhang, L. Li, M. Bi, and S. Xiao, Opt. Commun. 405, 152 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

H. Chalmers, “Digital frequency conversion and tuning scheme for microwave radio receivers and transmitters,” U.S. patent5,375,146 (20December1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. System architecture of the proposed adaptive SIC system. AWG: arbitrary waveform generator; Tx: transmitting antenna; Rx: receiving antenna; EML: electro-absorption modulated laser; BPD: balanced photodetector; $\alpha$: tunable optical attenuator; and $\tau$: tunable optical delay line.
Fig. 2.
Fig. 2. Illustration of the SOI-driven RT algorithm.
Fig. 3.
Fig. 3. S21 curves of the reference path (without antenna) and the self-interference antenna path. Inset: cancellation performance at the four matching frequency bands.
Fig. 4.
Fig. 4. Optimized cancellation performances. (a) Cable transmission at baseband; (b) over-the-air transmission at 18.35 GHz.
Fig. 5.
Fig. 5. Convergence process of the SOI-driven adaptive SIC: (a) BER of the cable baseband transmission. (b) BER of the over-the-air transmission (inset: RF spectrum). (c) Constellation diagrams of 16 QAM OFDM SOI. (i)–(iv) baseband; (v)–(viii) over-the-air.
Fig. 6.
Fig. 6. Number of iteration steps for reaching the optimized cancellation point in cable transmission (black square) and over-the-air-transmission (red circle).

Tables (1)

Tables Icon

Table 1. Comparison of Various Optical Based over-the-Air and Self-Adaptive Self-Interference Cancellation Schemes

Metrics