Abstract

In this Letter, we report a broadband frequency/polarization demultiplexer based on parallel-plate waveguides (PPWGs) for terahertz (THz) frequencies. The fabrication and experimental validation of this polarization sensitive demultiplexer is demonstrated for the range from 0.2 to 1 THz. Upgrading the demultiplexer by adding a second demultiplexer stage, a fifty-fifty amplitude splitter is also demonstrated in the same frequency range. The multiplexer is based on a stainless-steel traveling-wave antenna, exhibiting strong mechanical robustness. This unique device exhibits three splitting mechanisms in the same device: amplitude, polarization, and frequency splitting. This is a significant improvement for the next generation of THz passive components for communication purposes.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband polarization beam splitter with silicon subwavelength-grating waveguides

Chenlei Li, Ming Zhang, John E. Bowers, and Daoxin Dai
Opt. Lett. 45(8) 2259-2262 (2020)

Measurable lower limit of thin film conductivity with parallel plate waveguide terahertz time domain spectroscopy

Manjakavahoaka Razanoelina, Shohei Ohashi, Iwao Kawayama, Hironaru Murakami, Annick F. Dégardin, Alain J. Kreisler, and Masayoshi Tonouchi
Opt. Lett. 42(15) 3056-3059 (2017)

Terahertz generation in parallel plate waveguides activated by nonlinear metasurfaces

Symeon Sideris and Tal Ellenbogen
Opt. Lett. 44(14) 3590-3593 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Kleine-Ostmann and T. Nagatsuma, J. Infrared, Millimeter, Terahertz Waves 32, 143 (2011).
    [Crossref]
  2. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
    [Crossref]
  3. K. Sengupta, T. Nagatsuma, and D. M. Mittleman, Nat. Electron. 1, 622 (2018).
    [Crossref]
  4. Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, Opt. Express 21, 2347 (2013).
    [Crossref]
  5. H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 953 (2012).
    [Crossref]
  6. Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
    [Crossref]
  7. D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, APL Photonics 3, 051101 (2018).
    [Crossref]
  8. M. Yata, M. Fujita, and T. Nagatsuma, Opt. Express 24, 7835 (2016).
    [Crossref]
  9. J. Ma, M. Weidenbach, R. Guo, M. Koch, and D. Mittleman, J. Infrared Millimeter, Terahertz Waves 38, 1316 (2017).
    [Crossref]
  10. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
    [Crossref]
  11. H.-J. Song, J.-Y. Kim, K. Ajito, N. Kukutsu, and M. Yaita, IEEE Trans. Microw. Theory Tech. 62, 600 (2014).
    [Crossref]
  12. T. Nagatsuma, G. Ducournau, and C. C. Renaud, Nat. Photonics 10, 371 (2016).
    [Crossref]
  13. S. Cherry, IEEE Spectrum 41, 58 (2004).
    [Crossref]
  14. J. Y. Suen, M. T. Fang, and P. M. Lubin, IEEE Trans. Terahertz Sci. Technol. 4, 86 (2014).
    [Crossref]
  15. Y. Yang, M. Mandehgar, and D. Grischkowsky, Opt. Express 22, 4388 (2014).
    [Crossref]
  16. K. Su, L. Moeller, R. B. Barat, and J. F. Federici, J. Opt. Soc. Am. A 29, 2360 (2012).
    [Crossref]
  17. S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, J. Infrared Millimeter, Terahertz Waves 39, 553 (2018).
    [Crossref]
  18. R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6 (2009).
    [Crossref]
  19. A. Hernandez-Serrano, R. Mendis, K. S. Reichel, W. Zhang, E. Castro-Camus, and D. M. Mittleman, Opt. Express 26, 3702 (2018).
    [Crossref]
  20. D. M. Pozar, Microwave Engineering (Wiley, 2009).
  21. A. Hernandez-Serrano, Q. Sun, E. G. Bishop, E. R. Griffiths, C. P. Purssell, S. J. Leigh, J. Lloyd-Hughes, and E. Pickwell-MacPherson, Opt. Express 27, 11635 (2019).
    [Crossref]
  22. N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, Nat. Photonics 9, 717 (2015).
    [Crossref]
  23. R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, Sci. Rep. 7, 5909 (2017).
    [Crossref]
  24. K. S. Reichel, R. Mendis, and D. M. Mittleman, Sci. Rep. 6, 28925 (2016).
    [Crossref]

2019 (1)

2018 (5)

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, Nat. Electron. 1, 622 (2018).
[Crossref]

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, APL Photonics 3, 051101 (2018).
[Crossref]

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, J. Infrared Millimeter, Terahertz Waves 39, 553 (2018).
[Crossref]

A. Hernandez-Serrano, R. Mendis, K. S. Reichel, W. Zhang, E. Castro-Camus, and D. M. Mittleman, Opt. Express 26, 3702 (2018).
[Crossref]

2017 (2)

J. Ma, M. Weidenbach, R. Guo, M. Koch, and D. Mittleman, J. Infrared Millimeter, Terahertz Waves 38, 1316 (2017).
[Crossref]

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, Sci. Rep. 7, 5909 (2017).
[Crossref]

2016 (3)

K. S. Reichel, R. Mendis, and D. M. Mittleman, Sci. Rep. 6, 28925 (2016).
[Crossref]

M. Yata, M. Fujita, and T. Nagatsuma, Opt. Express 24, 7835 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, Nat. Photonics 10, 371 (2016).
[Crossref]

2015 (1)

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, Nat. Photonics 9, 717 (2015).
[Crossref]

2014 (3)

J. Y. Suen, M. T. Fang, and P. M. Lubin, IEEE Trans. Terahertz Sci. Technol. 4, 86 (2014).
[Crossref]

Y. Yang, M. Mandehgar, and D. Grischkowsky, Opt. Express 22, 4388 (2014).
[Crossref]

H.-J. Song, J.-Y. Kim, K. Ajito, N. Kukutsu, and M. Yaita, IEEE Trans. Microw. Theory Tech. 62, 600 (2014).
[Crossref]

2013 (2)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, Opt. Express 21, 2347 (2013).
[Crossref]

2012 (2)

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 953 (2012).
[Crossref]

K. Su, L. Moeller, R. B. Barat, and J. F. Federici, J. Opt. Soc. Am. A 29, 2360 (2012).
[Crossref]

2011 (1)

T. Kleine-Ostmann and T. Nagatsuma, J. Infrared, Millimeter, Terahertz Waves 32, 143 (2011).
[Crossref]

2009 (1)

2007 (1)

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
[Crossref]

2004 (1)

S. Cherry, IEEE Spectrum 41, 58 (2004).
[Crossref]

Abbott, D.

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, APL Photonics 3, 051101 (2018).
[Crossref]

Ajito, K.

H.-J. Song, J.-Y. Kim, K. Ajito, N. Kukutsu, and M. Yaita, IEEE Trans. Microw. Theory Tech. 62, 600 (2014).
[Crossref]

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 953 (2012).
[Crossref]

Altmann, K.

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Balzer, J. C.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, J. Infrared Millimeter, Terahertz Waves 39, 553 (2018).
[Crossref]

Barat, R. B.

Beltran-Mejia, F.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, J. Infrared Millimeter, Terahertz Waves 39, 553 (2018).
[Crossref]

Bishop, E. G.

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Busch, S. F.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, J. Infrared Millimeter, Terahertz Waves 39, 553 (2018).
[Crossref]

Castro-Camus, E.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, J. Infrared Millimeter, Terahertz Waves 39, 553 (2018).
[Crossref]

A. Hernandez-Serrano, R. Mendis, K. S. Reichel, W. Zhang, E. Castro-Camus, and D. M. Mittleman, Opt. Express 26, 3702 (2018).
[Crossref]

Chen, K.

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Chen, X.

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Chen, Z.

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Cherry, S.

S. Cherry, IEEE Spectrum 41, 58 (2004).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, Nat. Photonics 10, 371 (2016).
[Crossref]

Fang, M. T.

J. Y. Suen, M. T. Fang, and P. M. Lubin, IEEE Trans. Terahertz Sci. Technol. 4, 86 (2014).
[Crossref]

Federici, J. F.

Fujita, M.

Fumeaux, C.

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, APL Photonics 3, 051101 (2018).
[Crossref]

Griffiths, E. R.

Grischkowsky, D.

Guo, R.

J. Ma, M. Weidenbach, R. Guo, M. Koch, and D. Mittleman, J. Infrared Millimeter, Terahertz Waves 38, 1316 (2017).
[Crossref]

Headland, D.

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, APL Photonics 3, 051101 (2018).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Hernandez-Serrano, A.

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Hillmer, H.

Jansen, C.

Karl, N. J.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, Nat. Photonics 9, 717 (2015).
[Crossref]

Kim, J.-Y.

H.-J. Song, J.-Y. Kim, K. Ajito, N. Kukutsu, and M. Yaita, IEEE Trans. Microw. Theory Tech. 62, 600 (2014).
[Crossref]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, J. Infrared, Millimeter, Terahertz Waves 32, 143 (2011).
[Crossref]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
[Crossref]

Koch, M.

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, J. Infrared Millimeter, Terahertz Waves 39, 553 (2018).
[Crossref]

J. Ma, M. Weidenbach, R. Guo, M. Koch, and D. Mittleman, J. Infrared Millimeter, Terahertz Waves 38, 1316 (2017).
[Crossref]

Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, Opt. Express 21, 2347 (2013).
[Crossref]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Krumbholz, N.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
[Crossref]

Kukutsu, N.

H.-J. Song, J.-Y. Kim, K. Ajito, N. Kukutsu, and M. Yaita, IEEE Trans. Microw. Theory Tech. 62, 600 (2014).
[Crossref]

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 953 (2012).
[Crossref]

Kurner, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
[Crossref]

Leigh, S. J.

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Liu, X.

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Lloyd-Hughes, J.

Long, M.

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Lubin, P. M.

J. Y. Suen, M. T. Fang, and P. M. Lubin, IEEE Trans. Terahertz Sci. Technol. 4, 86 (2014).
[Crossref]

Ma, J.

J. Ma, M. Weidenbach, R. Guo, M. Koch, and D. Mittleman, J. Infrared Millimeter, Terahertz Waves 38, 1316 (2017).
[Crossref]

Mandehgar, M.

McKinney, R. W.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, Nat. Photonics 9, 717 (2015).
[Crossref]

Mendis, R.

A. Hernandez-Serrano, R. Mendis, K. S. Reichel, W. Zhang, E. Castro-Camus, and D. M. Mittleman, Opt. Express 26, 3702 (2018).
[Crossref]

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, Sci. Rep. 7, 5909 (2017).
[Crossref]

K. S. Reichel, R. Mendis, and D. M. Mittleman, Sci. Rep. 6, 28925 (2016).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, Nat. Photonics 9, 717 (2015).
[Crossref]

R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6 (2009).
[Crossref]

Mittleman, D.

J. Ma, M. Weidenbach, R. Guo, M. Koch, and D. Mittleman, J. Infrared Millimeter, Terahertz Waves 38, 1316 (2017).
[Crossref]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
[Crossref]

Mittleman, D. M.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, Nat. Electron. 1, 622 (2018).
[Crossref]

A. Hernandez-Serrano, R. Mendis, K. S. Reichel, W. Zhang, E. Castro-Camus, and D. M. Mittleman, Opt. Express 26, 3702 (2018).
[Crossref]

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, Sci. Rep. 7, 5909 (2017).
[Crossref]

K. S. Reichel, R. Mendis, and D. M. Mittleman, Sci. Rep. 6, 28925 (2016).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, Nat. Photonics 9, 717 (2015).
[Crossref]

R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6 (2009).
[Crossref]

Moeller, L.

Monnai, Y.

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, APL Photonics 3, 051101 (2018).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, Nat. Photonics 9, 717 (2015).
[Crossref]

Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, Opt. Express 21, 2347 (2013).
[Crossref]

Muramoto, Y.

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 953 (2012).
[Crossref]

Nagai, M.

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, Sci. Rep. 7, 5909 (2017).
[Crossref]

Nagatsuma, T.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, Nat. Electron. 1, 622 (2018).
[Crossref]

M. Yata, M. Fujita, and T. Nagatsuma, Opt. Express 24, 7835 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, Nat. Photonics 10, 371 (2016).
[Crossref]

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 953 (2012).
[Crossref]

T. Kleine-Ostmann and T. Nagatsuma, J. Infrared, Millimeter, Terahertz Waves 32, 143 (2011).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Pickwell-MacPherson, E.

A. Hernandez-Serrano, Q. Sun, E. G. Bishop, E. R. Griffiths, C. P. Purssell, S. J. Leigh, J. Lloyd-Hughes, and E. Pickwell-MacPherson, Opt. Express 27, 11635 (2019).
[Crossref]

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Piesiewicz, R.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Wiley, 2009).

Purssell, C. P.

Reichel, K. S.

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, Nat. Photonics 10, 371 (2016).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Schoebei, J.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
[Crossref]

Sengupta, K.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, Nat. Electron. 1, 622 (2018).
[Crossref]

Shinoda, H.

Song, H.-J.

H.-J. Song, J.-Y. Kim, K. Ajito, N. Kukutsu, and M. Yaita, IEEE Trans. Microw. Theory Tech. 62, 600 (2014).
[Crossref]

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 953 (2012).
[Crossref]

Stantchev, R. I.

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Su, K.

Suen, J. Y.

J. Y. Suen, M. T. Fang, and P. M. Lubin, IEEE Trans. Terahertz Sci. Technol. 4, 86 (2014).
[Crossref]

Sun, Q.

Tao, L.

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

Wakatsuki, A.

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 953 (2012).
[Crossref]

Weidenbach, M.

J. Ma, M. Weidenbach, R. Guo, M. Koch, and D. Mittleman, J. Infrared Millimeter, Terahertz Waves 38, 1316 (2017).
[Crossref]

Withayachumnankul, W.

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, APL Photonics 3, 051101 (2018).
[Crossref]

Xu, J.-B.

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Yaita, M.

H.-J. Song, J.-Y. Kim, K. Ajito, N. Kukutsu, and M. Yaita, IEEE Trans. Microw. Theory Tech. 62, 600 (2014).
[Crossref]

Yan, K.

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Yang, Y.

Yata, M.

Zhang, W.

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

APL Photonics (1)

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, APL Photonics 3, 051101 (2018).
[Crossref]

Electron. Lett. (1)

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 953 (2012).
[Crossref]

IEEE Antennas Propag. Mag. (1)

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, IEEE Antennas Propag. Mag. 49, 24 (2007).
[Crossref]

IEEE Spectrum (1)

S. Cherry, IEEE Spectrum 41, 58 (2004).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

H.-J. Song, J.-Y. Kim, K. Ajito, N. Kukutsu, and M. Yaita, IEEE Trans. Microw. Theory Tech. 62, 600 (2014).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

J. Y. Suen, M. T. Fang, and P. M. Lubin, IEEE Trans. Terahertz Sci. Technol. 4, 86 (2014).
[Crossref]

J. Infrared Millimeter, Terahertz Waves (2)

S. F. Busch, E. Castro-Camus, F. Beltran-Mejia, J. C. Balzer, and M. Koch, J. Infrared Millimeter, Terahertz Waves 39, 553 (2018).
[Crossref]

J. Ma, M. Weidenbach, R. Guo, M. Koch, and D. Mittleman, J. Infrared Millimeter, Terahertz Waves 38, 1316 (2017).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

T. Kleine-Ostmann and T. Nagatsuma, J. Infrared, Millimeter, Terahertz Waves 32, 143 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, and J.-B. Xu, Nat. Commun. 9, 1 (2018).
[Crossref]

Nat. Electron. (1)

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, Nat. Electron. 1, 622 (2018).
[Crossref]

Nat. Photonics (3)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, Nat. Photonics 7, 977 (2013).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, Nat. Photonics 10, 371 (2016).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, Nat. Photonics 9, 717 (2015).
[Crossref]

Opt. Express (5)

Sci. Rep. (2)

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, Sci. Rep. 7, 5909 (2017).
[Crossref]

K. S. Reichel, R. Mendis, and D. M. Mittleman, Sci. Rep. 6, 28925 (2016).
[Crossref]

Other (1)

D. M. Pozar, Microwave Engineering (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of the proposed demultiplexer. The incoming beam impinges on the back surface of the demultiplexer forming guided modes inside the structure. The exit beam is deflected by an angle $\theta $ which depends on the frequency of the signal and on the dimensions of the structure. The inset shows a photograph of the device. (b)–(c) Finite-element simulation at 0.3 THz when the spacing between plates is 0.8 mm for the ${{\rm TE}_1}$ and TEM guided-modes, respectively.
Fig. 2.
Fig. 2. Experimental setup. The transmitter and the demultiplexer were fixed on a rotating stage, while the receiver (Rx) was fixed on the optical table. An aperture of 2.5 mm was used in front of the receiver in order to improve the spatial resolution. Inset: photograph of the experimental setup.
Fig. 3.
Fig. 3. Experimental E-field transmission amplitude. (a) and (b) show the deflected angle electric field of the ${{\rm TE}_1}$ and TEM modes for the 0.55 mm spaced demultiplexer. (c) and (d) present similar results, but this time for the 0.8 mm spaced demultiplexer. In (a) and (c), the dashed black lines represent the predicted deflected angle given by Eq. (6); meanwhile, the dashed red lines represent the cutoff frequency.
Fig. 4.
Fig. 4. Normalized ohmic losses for the TE and TM modes. ${\alpha _c}$ is the ohmic loss coefficient, ${\eta _0}$ is the vacuum impedance, $d$ is the spacing $b$ between plates, and ${R_s}$ is the surface resistivity of stainless steel [20]. In this figure, it can be seen that the ${{\rm TE}_1}$ and the TEM modes have the lowest ohmic loss coefficients, while the higher-order modes have a normalized absorption coefficient greater than two within the operational frequency.
Fig. 5.
Fig. 5. (a) Bandwidth characterization for the 0.55 and 0.8 mm demultiplexer. The solid lines indicate the theoretical prediction by Eq. (7), and the dots indicate the 3 dB bandwidth. (b) Electric field time trace of the deflected THz wave at 5°, 10°, 15°, and 20° for the 0.8 mm spaced demultiplexer. The THz traces have been offset in the vertical direction for clarity.
Fig. 6.
Fig. 6. Experimental results for the fifty-fifty amplitude splitter with 0.55 mm spacing. (a) Transmission of the ${{\rm TE}_1}$ component shows an equal amplitude separation with exit angles between $ - {40}^\circ $ to 40°. The black dashed lines indicate the theoretical deflected angle using Eq. (6). (b) Transmission for the TEM components. The transmission values above 1 are observed for frequencies close to 0.2 THz due to the strong edge effects at these frequencies which slightly deflect the outgoing radiation towards the center of the demultiplexer focusing the energy. In (a), the transmission of the ${{\rm TE}_1}$ mode has been multiplied by a factor of three to match with the color scale in (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Z T E = k 0 η 0 k P P W G = η 0 ( 1 c 2 4 h 2 f 2 ) ,
k 0 sin ( φ ) = k P P W G .
k P P W G = k P P W G cos ( tan 1 ( h / b ) ) .
φ = sin 1 ( cos ( tan 1 ( h b ) ) 1 c 2 4 h 2 f 2 ) .
θ + φ + α = π 2 ,
θ = π 2 tan 1 ( h b ) sin 1 ( cos ( tan 1 ( h b ) ) 1 f c 2 f 2 )
Δ f = Δ θ | d θ d f | = Δ θ c f 1 f c 2 f 2 2 h a f c 2 ,

Metrics