Abstract

Understanding turbulence effects on laser beam propagation is critical to the emerging design, study, and test of many long-range free space optical (FSO) communication and directed energy systems. Conventional studies make the prevalent assumption of isotropic turbulence, while more recent results suggest anisotropic turbulence for atmospheric channels within a few meters elevation above the ground. As countless FSO systems have been and continue to be deployed in such channels, analysis of anisotropic modelings has become one of the fastest growing areas in FSO research. This in turn motivates new tools that can distinguish anisotropic characteristics to improve both modeling accuracy and physical interpretations. Wavefront sensors such as Shack–Hartmann sensors, interferometers, and plenoptic sensors have been devised and used in experiments; however, they all require rigid alignments that lack resilience against temperature gradient buildup and beam wander. We find that by using a light field camera (LFC) that extracts perturbation of individual light rays, the wave structure function of turbulence can be retrieved with high reliability. Furthermore, we find through experiments that the outer scales of near-ground turbulence tend to be a magnitude smaller than conventional theoretical assumptions, agreeing with new findings by others but being absent in current theoretical modelings. As a result, we believe that the LFC is an ideal candidate in the frontier of turbulence research; it is both commercially available and easy to adapt to turbulence experiments.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light

Fei Wang, Italo Toselli, Jia Li, and Olga Korotkova
Opt. Lett. 42(6) 1129-1132 (2017)

Simultaneous turbulence mitigation and channel demultiplexing for two 100  Gbit/s orbital-angular-momentum multiplexed beams by adaptive wavefront shaping and diffusing

Runzhou Zhang, Hao Song, Zhe Zhao, Haoqian Song, Jing Du, Cong Liu, Kai Pang, Long Li, Huibin Zhou, Ari N. Willner, Ahmed Almaiman, Yiyu Zhou, Robert W. Boyd, Brittany Lynn, Robert Bock, Moshe Tur, and Alan E. Willner
Opt. Lett. 45(3) 702-705 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription