Abstract

The existence of interface states at the boundary of two semi-infinite photonic crystals (PhCs) with different lattice constants are investigated systematically. Compared to the interface states in the two PhCs with the same period, a band folding effect is observed for the interface states inside the common band gap of the two PhCs with different lattice constants. We demonstrate that these interface states can be predicted by the surface impedance of the two PhCs. The dispersion of interface states can be determined by the condition of impedance matching combined with the band folding effect. Moreover, some part of the folded interface states penetrates the region of projected bulk bands, and they usually leak to the bulk and form resonant states. However, the interface state at the Γ point can be perfectly localized and becomes a bound state in the continuum (BIC) due to the symmetry mismatch. These findings may provide a general scheme for designing BICs in the PhC structures based on the interface states.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Propagating bound states in the continuum at the surface of a photonic crystal

Zhen Hu and Ya Yan Lu
J. Opt. Soc. Am. B 34(9) 1878-1883 (2017)

Near-field analysis of bound states in the continuum in photonic crystal slabs

Shiwei Dai, Peng Hu, and Dezhuan Han
Opt. Express 28(11) 16288-16297 (2020)

Bound states in the continuum in PT-symmetric optical lattices

Stefano Longhi
Opt. Lett. 39(6) 1697-1700 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription