Abstract

We report here an efficient watt-level tunable 1.7 µm fiber gas Raman laser. Pumped by a homemade pulsed fiber amplifier around 1.5 µm wavelength, a tunable laser ranging from 1687 to 1723 nm is demonstrated in a hydrogen-filled hollow-core photonic crystal fiber (HC-PCF). A maximum average power of $\sim{0.8}\;{\rm W}$ (pulse energy of $\sim{1.6}\;\unicode{x00B5} {\rm J}$) is achieved on a 20-m-long HC-PCF filled with 16 bar of hydrogen gas, corresponding to a maximum Raman power conversion efficiency of 60%. A steady-state model of the rotational stimulated Raman scattering in hydrogen-filled HC-PCF, considering the pump pulse shape, is also established. The predicted output power and pulse shapes of the pump and Stokes waves are in good agreement with the experimental results. Our system offers an elegant solution for realizing efficient, tunable, and high-power fiber lasers operating at 1.7 µm wavelength range.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
High pulse energy and quantum efficiency mid-infrared gas Raman fiber laser targeting CO2 absorption at 4.2 µm

Yazhou Wang, Manoj K. Dasa, Abubakar I. Adamu, J. E. Antonio-Lopez, Md. Selim Habib, Rodrigo Amezcua-Correa, Ole Bang, and Christos Markos
Opt. Lett. 45(7) 1938-1941 (2020)

Pure rotational stimulated Raman scattering in H2-filled hollow-core photonic crystal fibers

Hao Li, Wei Huang, Yulong Cui, Zhiyue Zhou, and Zefeng Wang
Opt. Express 28(16) 23881-23897 (2020)

Watt-level efficient 2.3 µm thulium fluoride fiber laser

Aleksey Tyazhev, Florent Starecki, Solenn Cozic, Pavel Loiko, Lauren Guillemot, Alain Braud, Franck Joulain, Mincheng Tang, Thomas Godin, Ammar Hideur, and Patrice Camy
Opt. Lett. 45(20) 5788-5791 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription