Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Strongly confined atomic localization by Rydberg coherent population trapping

Not Accessible

Your library or personal account may give you access

Abstract

We investigate the possibility to attain strongly confined atomic localization using interacting Rydberg atoms in a coherent population trapping ladder configuration, where a standing-wave is used as a coupling field in the second leg of the ladder. Depending on the degree of compensation for the Rydberg level energy shift induced by the van der Waals interaction, by the coupling field detuning, we distinguish between two antiblockade regimes, i.e., a partial antiblockade (PA) and a full antiblockade. While a periodic pattern of tightly localized regions can be achieved for both regimes, the PA allows much faster convergence of spatial confinement, yielding a high-resolution Rydberg state-selective superlocalization regime for higher-lying Rydberg levels. In comparison, for lower-lying Rydberg levels, the PA leads to an anomalous change of spectra linewidth, confirming the importance of using a stable uppermost state to achieve a superlocalization regime.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Ferris wheel patterning of Rydberg atoms using electromagnetically induced transparency with optical vortex fields

Hamid R. Hamedi, Viačeslav Kudriašov, Ning Jia, Jing Qian, and Gediminas Juzeliūnas
Opt. Lett. 46(17) 4204-4207 (2021)

Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitude-modulation field

Jin-Lei Wu, Shi-Lei Su, Yan Wang, Jie Song, Yan Xia, and Yong-Yuan Jiang
Opt. Lett. 45(5) 1200-1203 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved