Abstract

The selective excitation of localized surface wave modes remains a challenge in the design of both leaky-wave and bound-wave devices. In this Letter, we show how the truncation of a metasurface can play an important role in breaking the spatial inversion symmetry in the excitation of surface waves supported by the structure. This is done by combining a large anisotropy in the dispersion relation and the presence of an edge that also serves as a coupling mechanism between the plane wave excitation and the induced surface waves. By resorting to the exact solution to the scattering problem based on a discrete Wiener–Hopf technique, we show that by inverting the component of the impinging wavevector parallel to the truncation, two distinct surface waves are excited.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-moduated nonreciprocal metasurface absorber for surface waves

Aobo Li, Yunbo Li, Jiang Long, Ebrahim Forati, Zhixia Du, and Dan Sievenpiper
Opt. Lett. 45(5) 1212-1215 (2020)

Dual-toroidal dipole excitation on permittivity-asymmetric dielectric metasurfaces

Xingguang Liu, Junqing Li, Qiang Zhang, and Yixiao Wang
Opt. Lett. 45(10) 2826-2829 (2020)

Terahertz dual phase gradient metasurfaces: high-efficiency binary-channel spoof surface plasmon excitation

Li-Zheng Yin, Tie-Jun Huang, Di Wang, Jiang-Yu Liu, Yan Sun, and Pu-Kun Liu
Opt. Lett. 45(2) 411-414 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription