Abstract

A photonic scanning receiver with optical frequency scanning and electrical intermediate frequency envelope detection is proposed to implement wide-range microwave frequency measurement. This system applies photonic in-phase and quadrature frequency mixing to distinguish and measure the signals in two frequency bands that mirror each other. Combined with the photonic frequency octupling technique, the proposed system has a frequency measurement range that is 16 times that of the sweeping range of the electrical signal source. Besides, optical frequency sweeping with up and down chirps is used to relax the requirement for precise synchronization between the sweeping source and the analog-to-digital converter. In the experiment, using an electrical sweeping local oscillator having a bandwidth of 1.75 GHz, the system achieves a frequency measurement range as large as 28 GHz. The measurement errors are kept within 24 MHz with an average error of 9.31 MHz.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Deep neural network-assisted high-accuracy microwave instantaneous frequency measurement with a photonic scanning receiver

Yuewen Zhou, Fangzheng Zhang, Jingzhan Shi, and Shilong Pan
Opt. Lett. 45(11) 3038-3041 (2020)

Microwave photonics instantaneous frequency measurement receiver based on a Sagnac loop

Hossein Emami, Mohammadreza Hajihashemi, Sayed Ehsan Alavi, Abu Sahmah Mohd Supaat, and Lam Bui
Opt. Lett. 43(10) 2233-2236 (2018)

Photonic generation of background-free frequency-doubled phase-coded microwave pulses with immunity to periodic power fading

Wu Zhang, Qinggui Tan, Xiaojun Li, and Di Wang
Opt. Lett. 45(6) 1407-1410 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription