Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modified deep-learning-powered photonic analog-to-digital converter for wideband complicated signal receiving

Not Accessible

Your library or personal account may give you access

Abstract

We propose and demonstrate a modified deep-learning-powered photonic analog-to-digital converter (DL-PADC) in which a neural network is used to eliminate the signal distortions of the photonic system. This work broadens the receiving capability from simple waveforms to complicated waveforms via implementing a modified deep learning algorithm. Thus, the modified DL-PADC can be applied in real scenarios with wideband complicated signals. Testing results show that the trained neural network eliminates the signal distortions with high quality, improving the spur-free dynamic range by ${\sim}{{20}}\;{\rm{dB}}$. An experiment for echo detection is conducted as an example, which shows that the neural network enhances the quality of detailed target profile detection. Furthermore, the modified DL-PADC only comprises a low-complexity photonic system, which obviates the requirement for redundant hardware setup while maintaining the processing quality. It is expected that the modified DL-PADC can perform as a promising photonic wideband signal receiver with low hardware complexity.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This

Supplementary Material (1)

NameDescription
Code 1       The neural network model of MU-net used in this work

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.