Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantitative amplitude-measuring Φ-OTDR with ${\rm p}\unicode{x03B5}/\surd{\rm Hz}$ sensitivity using a multi-frequency pulse train

Abstract

We report an amplitude-measuring Rayleigh-based sensor that uses a series of frequency-shifted pulses to extract quantitative distributed strain measurements. By using frequency multiplexing, we are able to inject a train of 10 pulses into the fiber at once. This allows us to use a higher average input power than standard phase-sensitive optical time domain reflectometry systems, improving the sensitivity. The sensor recovers the strain by tracking the time-dependent amplitude of the Rayleigh backscattered light from all 10 pulses. This approach enables a sensor with a noise floor of ${1.5}\;{\rm p}\unicode{x03B5} /\surd {\rm Hz}$ over 10 km of fiber with 12 m spatial resolution, a 5 kHz bandwidth, and a dynamic range of 80 dB at 1 kHz. The sensor exhibits a high degree of linearity and is immune to interference fading.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative strain sensing in a multimode fiber using dual frequency speckle pattern tracking

Matthew J. Murray and Brandon Redding
Opt. Lett. 45(6) 1309-1312 (2020)

Distributed dynamic strain sensing in coherent Φ-OTDR with a pulse conversion algorithm

Heng Qian, Bin Luo, Haijun He, Yin Zhou, Xihua Zou, Wei Pan, and Lianshan Yan
Opt. Lett. 46(7) 1668-1671 (2021)

High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression

He Li, Qingwen Liu, Dian Chen, Yuanpeng Deng, and Zuyuan He
Opt. Lett. 45(2) 563-566 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.