Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Adaptive high-dynamic-range Fourier ptychography microscopy data acquisition with a red-green-blue camera

Not Accessible

Your library or personal account may give you access

Abstract

Fourier ptychography microscopy is a powerful tool for wide-field and high-spatial-resolution imaging. It can achieve a large field of view and high-spatial-resolution imaging with a low numerical aperture objective by capturing a series of low-resolution (LR) images that contain the information of different spatial frequencies and then stitching them together in the Fourier domain. Furthermore, the phase information of the object can also be recovered simultaneously. In this Letter, we propose a method to realize adaptive high-dynamic-range (HDR) LR image acquisition with a red, green, and blue camera, which needs only single exposure for each light-emitting diode (LED) illumination. According to the imaging principle of a color camera, the filter of each color channel still allows additional light within a certain wavelength range to pass through, but with a much smaller transmittance. By illuminating the sample with monochromatic light and combining the raw data from three color channels together, an HDR image corresponding to each LED illumination is obtained. The feasibility and good performance of our method are demonstrated by the experimental results.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography

Jiasong Sun, Qian Chen, Jialin Zhang, Yao Fan, and Chao Zuo
Opt. Lett. 43(14) 3365-3368 (2018)

Dictionary-based compressive Fourier ptychography

Xianye Li, Li Li, Xiaoli Liu, Wenqi He, Qijian Tang, Sen Han, and Xiang Peng
Opt. Lett. 47(9) 2314-2317 (2022)

Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography

Meng Xiang, An Pan, Yiyi Zhao, Xuewu Fan, Hui Zhao, Chuang Li, and Baoli Yao
Opt. Lett. 46(1) 29-32 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.