Abstract

In this Letter, we report the experimental observations of a tunable curved photonic nanojet (photonic hook) generated by a 5 µm polydimethylsiloxane microcylinder deposited on a silicon substrate and illuminated by 405 nm laser beam. A moveable opaque aluminum-mask is mounted in front of the microcylinder implementing partial illumination and imparting spatial curvature to the photonic nanojet. Experimental results of main parameters (tilt angle, width, and intensity) of emerging photonic hooks exhibit close agreement with numerical predictions of the near-field optical structures. The experimentally measured full widths at half-maximum of photonic hooks are ${0.48}\lambda$, ${0.56}\lambda$, and ${0.76}\lambda$ for tilt angles of $\theta = {0}^\circ$, 5.7°, and 20.1°, respectively. Photonic hooks possess great potential in complex manipulation such as super-resolution imaging, surface fabrication, and optomechanical manipulation along curved trajectories.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental verification of twin photonic nanojets from a dielectric microcylinder

Cheng-Yang Liu and Meng-Ju Yeh
Opt. Lett. 44(13) 3262-3265 (2019)

Photonic hooks from Janus microcylinders

Guoqiang Gu, Liyang Shao, Jun Song, Junle Qu, Kai Zheng, Xingliang Shen, Zeng Peng, Jie Hu, Xiaolong Chen, Ming Chen, and Qiang Wu
Opt. Express 27(26) 37771-37780 (2019)

Reflective photonic hook achieved by a dielectric-coated concave hemicylindrical mirror

Cheng-Yang Liu, Hung-Ju Chung, and Hsuan-Pei E
J. Opt. Soc. Am. B 37(9) 2528-2533 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription