Abstract

A fast Brillouin optical time-domain analysis (BOTDA) sensor has been proposed and experimentally demonstrated based on the frequency-agile and compressed-sensing technique. The proposed scheme employs a data-adaptive sparse base obtained by the principle component analysis algorithm, enabling the sparse representation of Brillouin spectrum. Then, it can be reconstructed successfully with random frequency sampling and orthogonal matching-pursuit algorithms. In the experiment, the Brillouin gain spectrum (BGS) is mapped by the conventional fast BOTDA, where the frequency step and span are 4 MHz and 500 MHz, respectively. By using compressed-sensing technology, the BGS is successfully recovered with 37 random frequency samples, the number of which is only 30% of the full data. With fewer sampling frequencies, the compressed-sensing technology is able to improve the sensing performance of the conventional fast BOTDA, including a 3.3-time increase in sampling rate and 70% reduction in data storage.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription