Abstract

Based on squared top-hat beam irradiations, we investigate how a change of the pulse duration in the picosecond regime affects the phenomenon of laser damage growth on dielectric mirrors. We first confirm two major previously reported experimental results with a Gaussian beam that are the existence of a growth threshold fluence smaller than the laser-induced damage threshold (LIDT) and the linear evolution, characterized by a growth coefficient, of the damage area with the number of irradiations when growth occurs. We then express the growth coefficient with the fluence and the growth threshold in particular. Changing the pulse duration ultimately allows us to refine this expression a step further which leads us to establish an empirical growth law for the damage area. The temporal dependency displayed within this law appears to be very close to the one found for the LIDT which evidences the deterministic nature of laser damage growth in short pulse regimes.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser damage growth with picosecond pulses

Martin Sozet, Jérôme Neauport, Eric Lavastre, Nadja Roquin, Laurent Gallais, and Laurent Lamaignère
Opt. Lett. 41(10) 2342-2345 (2016)

Polarization dependent laser damage growth of optical coatings at sub-picosecond regime

Md. Rasedujjaman and Laurent Gallais
Opt. Express 26(19) 24444-24460 (2018)

Laser damage density measurement of optical components in the sub-picosecond regime

Martin Sozet, Jérôme Néauport, Eric Lavastre, Nadja Roquin, Laurent Gallais, and Laurent Lamaignère
Opt. Lett. 40(9) 2091-2094 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription