Abstract

Mid-IR absorption of single layer graphene (SLG) was simulated and experimentally demonstrated by embedding a SLG grown by chemical vapor deposition (CVD) inside a Fabry–Perot (FP) filter made by alternating quarter wave Si and ${\rm{Si}}{{\rm{O}}_2}$ layers fabricated by radiofrequency sputtering. The absorption from the graphene layer was modeled by using COMSOL Multiphysics in four different configurations, depending on its position inside the filter, an asymmetric FP made of two different dielectric mirrors separated by a cavity. In the first three configurations, graphene was inserted at the center of the optical cavity and inside the top or bottom dielectric mirror forming the FP. The fourth configuration involves two layers of graphene, each positioned inside one of the dielectric mirrors. The calculated electric field distribution inside the FP shows two symmetric maxima just above and below the cavity, i.e., inside the mirrors, while the electric field at the center of the cavity is negligible. For the experimental demonstration, the graphene geometry corresponding to the maximum electric field intensity was chosen, and, between two equivalent alternatives, the one with the easiest fabrication procedure was selected. Results demonstrate a maximum experimental absorption of 50% at 4342 nm for SLG when inserted in the top mirror of the FP, in excellent agreement with the simulated value of 53%.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription