Abstract

The conventional Shack–Hartmann wavefront sensor (SHWS) requires wavefront slope measurements of every micro-lens for wavefront reconstruction. In this Letter, we applied deep learning on the SHWS to directly predict the wavefront distributions without wavefront slope measurements. The results show that our method could provide a lower root mean square wavefront error in high detection speed. The performance of the proposed method is also evaluated on challenging wavefronts, while the conventional approaches perform insufficiently. This Letter provides a new approach, to the best of our knowledge, to perform direct wavefront detection in SHWS-based applications.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription