Abstract

Focusing through scattering media is a subject of great interest due to its direct impact in the field of biomedical optics. However, the greatest barrier currently limiting direct applications is the fact that most scattering media that we wish to deliver light through are dynamic. To focus or deliver light through dynamic scattering media, using a digital micromirror device (DMD) has been demonstrated to be a potential solution, as it enables fast modulation speeds. However, since a DMD is a binary amplitude modulator, the large number of controlled modes needed to acquire adequate focus enhancement has limited optimal usage. Here we demonstrate a novel (to the best of our knowledge) scheme to use the “thrown-away” components of light to effectively use a binary amplitude DMD as a binary phase modulator, thereby increasing the correction efficiency by a factor of two. Our concept can be applied to any iterative optimization algorithm and can speed up the iterative optimization process by increasing the enhancement factor, rather than the measurement or modulation speeds.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics

Mindan Ren, Jialong Chen, Dihan Chen, and Shih-Chi Chen
Opt. Lett. 45(9) 2656-2659 (2020)

Model-based wavefront shaping microscopy

Abhilash Thendiyammal, Gerwin Osnabrugge, Tom Knop, and Ivo M. Vellekoop
Opt. Lett. 45(18) 5101-5104 (2020)

Quantitative phase imaging based on wavefront correction of a digital micromirror device

Jing Hu, Xiwei Xie, and Yibing Shen
Opt. Lett. 45(18) 5036-5039 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription