Abstract

We developed a graded-index plastic optical fiber (GI POF) that enables lower-noise radio frequency (RF) transmission than conventional multimode fibers for short-distance household applications (${\lt}{100}\;{\rm m}$). It is shown that reflection noise degrades RF transmission, regardless of the carrier frequency, through the spurious generation that accompanies the RF modulation of a vertical-cavity surface-emitting laser. The GI POF with distinctive mode coupling, which is closely related to its microscopic polymer structure, suppresses noise and spurious generation to improve transmission quality. Our low-noise radio-over-GI-POF technology will offer significant advantages for optical wiring systems for broadcast and communication in small- and medium-scale buildings.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription