Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Demonstration of using two aperture pairs combined with multiple-mode receivers and MIMO signal processing for enhanced tolerance to turbulence and misalignment in a 10 Gbit/s QPSK FSO link

Abstract

We utilize aperture diversity combined with multiple-mode receivers and multiple-input-multiple-output (MIMO) digital signal processing (DSP) to demonstrate enhanced tolerance to atmospheric turbulence and spatial misalignment in a 10 Gbit/s quadrature-phase-shift-keyed (QPSK) free-space optical (FSO) link. Turbulence and misalignment could cause power coupling from the fundamental Gaussian mode into higher-order modes. Therefore, we detect power from multiple modes and use MIMO DSP to enhance the recovery of the original data. In our approach, (a) each of multiple transmitter apertures transmits a single fundamental Gaussian beam carrying the same data stream, (b) each of multiple receiver apertures detects the signals that are coupled from the fundamental Gaussian beams to multiple orbital angular momentum (OAM) modes, and (c) MIMO DSP is used to recover the data over multiple modes and receivers. Our simulation shows that the outage probability could be reduced from ${\gt}{0.1}$ to ${\lt}{0.01}$. Moreover, we experimentally demonstrate the scheme by transmitting two fundamental Gaussian beams carrying the same data stream and recovering the signals on OAM modes 0 and ${+}{1}$ at each receiver aperture. We measure an up to ${\sim}{10}\;{\rm dB}$ power-penalty reduction for a bit error rate (BER) at the 7% forward error correction limit for a 10 Gbit/s QPSK signal.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization

Yongxiong Ren, Zhe Wang, Guodong Xie, Long Li, Asher J. Willner, Yinwen Cao, Zhe Zhao, Yan Yan, Nisar Ahmed, Nima Ashrafi, Solyman Ashrafi, Robert Bock, Moshe Tur, and Alan E. Willner
Opt. Lett. 41(11) 2406-2409 (2016)

Mitigation for turbulence effects in a 40-Gbit/s orbital-angular-momentum-multiplexed free-space optical link between a ground station and a retro-reflecting UAV using MIMO equalization

Long Li, Runzhou Zhang, Peicheng Liao, Yinwen Cao, Haoqian Song, Yifan Zhao, Jing Du, Zhe Zhao, Cong Liu, Kai Pang, Hao Song, Ahmed Almaiman, Dmitry Starodubov, Brittany Lynn, Robert Bock, Moshe Tur, Andreas F. Molisch, and Alan E. Willner
Opt. Lett. 44(21) 5181-5184 (2019)

Demonstration of turbulence mitigation in a 200-Gbit/s orbital-angular-momentum multiplexed free-space optical link using simple power measurements for determining the modal crosstalk matrix

Nanzhe Hu, Haoqian Song, Runzhou Zhang, Huibin Zhou, Cong Liu, Xinzhou Su, Hao Song, Kai Pang, Kaiheng Zou, Brittany Lynn, Moshe Tur, and Alan E. Willner
Opt. Lett. 47(14) 3539-3542 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.