Abstract

Free-space quantum key distribution (QKD) based on mobile platforms, such as satellites, drones, and vehicles, is considered a promising way to overcome the rate-distance limit without a quantum repeater. Real-time reference frame calibration is required in most recent implemented polarization encoded QKD systems due to the relative motion between sender and receiver. Although active compensations can be used to calibrate the reference frame, doing so increases the complexity of the system and reduces the key rate. To overcome this problem, the reference-frame-independent (RFI) QKD was proposed in which fixed deviations of the reference frame between the two parties are tolerated automatically. In this Letter, we report the experimental implementation of a time-bin encoded RFI QKD in an urban environment through free space. The quantum bit error rate for key-distill is as low as 1% over a 2 km free-space link with a total equivalent loss of 31.5 dB. Our demonstration shows that a stable RFI QKD can be implemented in the free-space channel.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription