Abstract

Photodetectors with internal gain are of great interest for imaging applications, since internal gain reduces the effective noise of readout electronics. High-gain photodetectors have been demonstrated, but only individually rather than as a full array in a camera. Consequently, there has been little investigation of the interaction between camera complementary metal oxide semiconductor (CMOS) electronics and the slow response time that high-gain photodetectors often exhibit. Here we show that this interaction filters shot noise and causes noise statistics to differ from the common Poisson distribution. As an example, we investigate a ${320} \times {256}$ array of InGaAs/InP high-gain phototransistors bonded to a CMOS readout chip. We demonstrate the filtering effects and discuss their consequences, including new (to the best of our knowledge) methods for extracting gain and increasing dynamic range.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription