Abstract
Frequency-bin qudits constitute a promising tool for quantum information processing, but their high dimensionality can make for tedious characterization measurements. Here we introduce and compare compressive sensing and Bayesian mean estimation for recovering the spectral correlations of entangled photon pairs. Using a conventional compressive sensing algorithm, we reconstruct joint spectra with up to a 26-fold reduction in measurement time compared to the equivalent raster scan. Applying a custom Bayesian model to the same data, we then additionally realize reliable and consistent quantification of uncertainty. These efficient methods of biphoton characterization should advance our ability to use the high degree of parallelism and complexity afforded by frequency-bin encoding.
© 2020 Optical Society of America
Full Article | PDF ArticleMore Like This
Qi Chu, Benzhang Wang, Henan Wang, Dexin Ba, and Yongkang Dong
Opt. Lett. 45(15) 4365-4368 (2020)
Changchen Chen, Cao Bo, Murphy Yuezhen Niu, Feihu Xu, Zheshen Zhang, Jeffrey H. Shapiro, and Franco N. C. Wong
Opt. Express 25(7) 7300-7312 (2017)
Xiao Xiang, Ruifang Dong, Runai Quan, Yaqing Jin, Ye Yang, Ming Li, Tao Liu, and Shougang Zhang
Opt. Lett. 45(11) 2993-2996 (2020)