Abstract

Ultraviolet (UV) microscopy has recently re-emerged as an important label-free, molecular imaging technique. This stems from the unique UV absorption properties of many endogenous biomolecules that play a critical role in cell structure and function. However, broadband hyperspectral imaging in this spectral region is challenging due to strong chromatic aberrations inherent in UV systems. Here we apply an intensity-based, two-stage, iterative phase-recovery algorithm that leverages the same chromatic aberrations to overcome this challenge. Importantly, knowledge of samples’ dispersion or absorption properties is not required. We demonstrate that the computationally retrieved phase can be applied to digitally refocus images across a large bandwidth. This enables hyperspectral UV imaging with a simple microscope for quantitative molecular analysis. We validate this method through simulations and through experiments with red blood cells.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription