Abstract

Self-heterodyne fiber interferometers have been shown to be capable of stabilizing lasers to ultra-narrow linewidths and present an excellent alternative to high-finesse cavities for frequency stabilization. In addition to suppressing frequency noise, these devices are highly tunable and can be manipulated to produce high-speed frequency sweeps over the entire range of the laser. We present an analytic approach for choosing a delay-line length for both optimal noise suppression and highest in-loop frequency sweep rate. Based on this model, we stabilize an extended cavity diode laser to a fiber Michelson interferometer and demonstrate a linewidth of 700 Hz over millisecond timescales while also allowing for a frequency scan rate of 1 THz/s. We independently measure the maximum deviation from linearity of the sweep to be only 100 kHz.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line

Fabien Kéfélian, Haifeng Jiang, Pierre Lemonde, and Giorgio Santarelli
Opt. Lett. 34(7) 914-916 (2009)

An agile laser with ultra-low frequency noise and high sweep linearity

Haifeng Jiang, Fabien Kéfélian, Pierre Lemonde, André Clairon, and Giorgio Santarelli
Opt. Express 18(4) 3284-3297 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription