Abstract

The propagation distance of a pulsed beam in free space is ultimately limited by diffraction and space-time coupling. “Space-time” (ST) wave packets are pulsed beams endowed with tight spatio-temporal spectral correlations that render them propagation-invariant. Here we explore the limits of the propagation distance for ST wave packets. Making use of a specially designed phase plate inscribed by gray-scale lithography and having a laser-damage threshold of 0.5J/cm2, we synthesize a ST light sheet of width 700μm and bandwidth 20nm, and confirm a propagation distance of 70m.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synthesizing broadband propagation-invariant space-time wave packets using transmissive phase plates

H. Esat Kondakci, Murat Yessenov, Monjurul Meem, Danielle Reyes, Daniel Thul, Shermineh Rostami Fairchild, Martin Richardson, Rajesh Menon, and Ayman F. Abouraddy
Opt. Express 26(10) 13628-13638 (2018)

What is the maximum differential group delay achievable by a space-time wave packet in free space?

Murat Yessenov, Lam Mach, Basanta Bhaduri, Davood Mardani, H. Esat Kondakci, George K. Atia, Miguel A. Alonso, and Ayman F. Abouraddy
Opt. Express 27(9) 12443-12457 (2019)

Meters-long propagation of diffraction-free space-time light-sheets

Basanta Bhaduri, Murat Yessenov, and Ayman F. Abouraddy
Opt. Express 26(16) 20111-20121 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription