Abstract

We developed a generalized spectral phase superposition approach for generating accelerating optical beams along arbitrary trajectories. Such beams can be customized by predefining an appropriate superimposed phase pattern that consists of multiple sub-phases. We generated a spirally accelerating beam in a three-dimensional space and developed an algorithm to improve the uniformity of the intensity along the trajectory by introducing phase-shift factors. We also experimentally verified our numerical simulations. The proposed approach breaks the conventional convex trajectory restrictions. These various accelerating beams would pave the way for optically moving particles along a desired trajectory. The generation of such arbitrary accelerating beams is likely to give rise to new applications in flexible optical manipulation, wave front control, and optical transportation and guidance of particles.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Closed-form expressions for nonparaxial accelerating beams with pre-engineered trajectories

Raluca-Sorina Penciu, Vassilis Paltoglou, and Nikolaos K. Efremidis
Opt. Lett. 40(7) 1444-1447 (2015)

Airy beams and accelerating waves: an overview of recent advances

Nikolaos K. Efremidis, Zhigang Chen, Mordechai Segev, and Demetrios N. Christodoulides
Optica 6(5) 686-701 (2019)

Practical algorithm for custom-made caustic beams

Timor Melamed and Amir Shlivinski
Opt. Lett. 42(13) 2499-2502 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Visualization 1       The evolution of a spiral beam in x–y plane.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription